File size: 7,391 Bytes
359f755
 
 
 
 
 
 
 
 
 
 
 
77c0f20
359f755
 
 
 
 
 
 
77c0f20
 
 
359f755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77c0f20
359f755
77c0f20
 
359f755
 
 
 
 
 
 
77c0f20
 
359f755
 
 
 
 
 
ce8066d
 
 
77c0f20
 
c99a049
77c0f20
 
 
c99a049
77c0f20
 
 
 
 
 
 
ce8066d
77c0f20
359f755
 
 
 
 
 
 
 
 
 
 
25de5ef
 
 
 
359f755
 
c99a049
 
 
ce8066d
c99a049
 
ce8066d
359f755
ce8066d
359f755
 
77c0f20
 
ce8066d
359f755
 
 
 
 
 
 
 
 
 
ce8066d
 
359f755
 
c99a049
ce8066d
c99a049
 
ce8066d
359f755
c99a049
 
 
 
ce8066d
c99a049
 
ce8066d
c99a049
ce8066d
c99a049
359f755
 
ce8066d
359f755
 
ce8066d
359f755
 
ce8066d
 
 
359f755
 
ce8066d
359f755
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import glob
import json
import math
import os
from dataclasses import dataclass

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
from src.submission.check_validity import is_model_on_hub

@dataclass
class EvalResult:
    """Represents one perplexity evaluation result."""
    eval_name: str # org_model_precision (uid)
    full_model: str # org/model (path on hub)
    org: str 
    model: str
    revision: str # commit hash, "" if main
    results: dict
    precision: Precision = Precision.Unknown
    model_type: ModelType = ModelType.PT  # Default to pretrained
    weight_type: WeightType = WeightType.Original
    architecture: str = "Unknown"
    still_on_hub: bool = False

    @classmethod
    def init_from_json_file(self, json_filepath):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            data = json.load(fp)

        config = data.get("config")

        # Precision
        precision = Precision.from_str(config.get("model_dtype"))

        # Get model and org
        org_and_model = config.get("model_name", config.get("model_args", None))
        org_and_model = org_and_model.split("/", 1)

        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
            result_key = f"{model}_{precision.value.name}"
        else:
            org = org_and_model[0]
            model = org_and_model[1]
            result_key = f"{org}_{model}_{precision.value.name}"
        full_model = "/".join(org_and_model)

        still_on_hub, _, model_config = is_model_on_hub(
            full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
        )
        architecture = "?"
        if model_config is not None:
            architectures = getattr(model_config, "architectures", None)
            if architectures:
                architecture = ";".join(architectures)

        # Extract perplexity result
        results = {}
        if "perplexity" in data["results"]:
            results["perplexity"] = data["results"]["perplexity"]["perplexity"]

        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=results,
            precision=precision,
            revision=config.get("model_sha", ""),
            still_on_hub=still_on_hub,
            architecture=architecture
        )

    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        print(f"\nProcessing result for model: {self.full_model}", flush=True)
        print(f"Raw results: {self.results}", flush=True)
        
        # Calculate average, handling perplexity (lower is better)
        scores = []
        perplexity_score = None
        for task in Tasks:
            if task.value.benchmark in self.results:
                score = self.results[task.value.benchmark]
                perplexity_score = score  # Save the raw score
                # Convert perplexity to a 0-100 scale where lower perplexity = higher score
                # Using a log scale since perplexity can vary widely
                # Cap at 100 for very low perplexity and 0 for very high perplexity
                score = max(0, min(100, 100 * (1 - math.log(score) / 10)))
                scores.append(score)
        
        average = sum(scores) / len(scores) if scores else 0
        print(f"Calculated average score: {average}", flush=True)
        
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.precision.name: self.precision.value.name,
            AutoEvalColumn.model_type.name: self.model_type.value.name,
            AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
            AutoEvalColumn.weight_type.name: self.weight_type.value.name,
            AutoEvalColumn.architecture.name: self.architecture,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            AutoEvalColumn.revision.name: self.revision,
            AutoEvalColumn.average.name: average,
            AutoEvalColumn.still_on_hub.name: self.still_on_hub,
            # Add missing columns with default values
            AutoEvalColumn.license.name: "Unknown",  # Default license
            AutoEvalColumn.params.name: 0,  # Default params
            AutoEvalColumn.likes.name: 0,  # Default likes
        }

        # Add perplexity score with the exact column name from Tasks
        if perplexity_score is not None:
            data_dict[Tasks.task0.value.col_name] = perplexity_score
            print(f"Added perplexity score {perplexity_score} under column {Tasks.task0.value.col_name}", flush=True)
        else:
            data_dict[Tasks.task0.value.col_name] = None
            print(f"No perplexity score found for column {Tasks.task0.value.col_name}", flush=True)

        print(f"Final data dict keys: {list(data_dict.keys())}", flush=True)
        return data_dict

def get_raw_eval_results(results_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all perplexity results"""
    print(f"\nSearching for result files in: {results_path}", flush=True)
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        if len(files) == 0 or any([not f.endswith(".json") for f in files]):
            continue

        for file in files:
            model_result_filepaths.append(os.path.join(root, file))

    print(f"Found {len(model_result_filepaths)} result files", flush=True)

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        try:
            print(f"\nProcessing file: {model_result_filepath}", flush=True)
            # Creation of result
            eval_result = EvalResult.init_from_json_file(model_result_filepath)
            print(f"Created result object for: {eval_result.full_model}", flush=True)

            # Store results of same eval together
            eval_name = eval_result.eval_name
            if eval_name in eval_results.keys():
                eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
                print(f"Updated existing result for {eval_name}", flush=True)
            else:
                eval_results[eval_name] = eval_result
                print(f"Added new result for {eval_name}", flush=True)
        except Exception as e:
            print(f"Error processing result file {model_result_filepath}: {e}", flush=True)
            continue

    results = []
    print(f"\nProcessing {len(eval_results)} evaluation results", flush=True)
    for v in eval_results.values():
        try:
            print(f"\nConverting result to dict for: {v.full_model}", flush=True)
            v.to_dict() # we test if the dict version is complete
            results.append(v)
            print("Successfully converted and added result", flush=True)
        except KeyError as e:
            print(f"Error converting result to dict: {e}", flush=True)
            continue

    print(f"\nReturning {len(results)} processed results", flush=True)
    return results