Spaces:
Runtime error
Runtime error
Ahmed Ahmed
commited on
Commit
·
ce8066d
1
Parent(s):
c99a049
consolidate
Browse files- app.py +18 -1
- src/leaderboard/read_evals.py +21 -3
- src/populate.py +45 -20
app.py
CHANGED
@@ -25,6 +25,10 @@ def init_leaderboard(dataframe):
|
|
25 |
if dataframe is None:
|
26 |
raise ValueError("Leaderboard DataFrame is None.")
|
27 |
|
|
|
|
|
|
|
|
|
28 |
return Leaderboard(
|
29 |
value=dataframe,
|
30 |
select_columns=[c.name for c in fields(AutoEvalColumn) if not c.hidden],
|
@@ -38,8 +42,10 @@ def init_leaderboard(dataframe):
|
|
38 |
|
39 |
def refresh_leaderboard():
|
40 |
"""Refresh leaderboard data from disk"""
|
|
|
41 |
try:
|
42 |
# Download latest results
|
|
|
43 |
snapshot_download(
|
44 |
repo_id=RESULTS_REPO,
|
45 |
local_dir=EVAL_RESULTS_PATH,
|
@@ -48,23 +54,34 @@ def refresh_leaderboard():
|
|
48 |
etag_timeout=30,
|
49 |
token=TOKEN
|
50 |
)
|
|
|
51 |
except Exception as e:
|
52 |
-
print(f"Error refreshing results: {e}")
|
53 |
|
54 |
# Get fresh leaderboard data
|
|
|
55 |
df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
|
|
|
56 |
return init_leaderboard(df)
|
57 |
|
58 |
def run_perplexity_test(model_name, revision, precision):
|
59 |
"""Run perplexity evaluation on demand."""
|
|
|
|
|
|
|
|
|
|
|
60 |
if not model_name:
|
61 |
return "Please enter a model name.", None
|
62 |
|
63 |
success, result = run_dynamic_perplexity_eval(model_name, revision, precision)
|
|
|
64 |
|
65 |
if success:
|
66 |
# Get updated leaderboard
|
|
|
67 |
new_leaderboard = refresh_leaderboard()
|
|
|
68 |
return f"✅ Perplexity evaluation completed!\nPerplexity: {result:.4f}", new_leaderboard
|
69 |
else:
|
70 |
return f"❌ Evaluation failed: {result}", None
|
|
|
25 |
if dataframe is None:
|
26 |
raise ValueError("Leaderboard DataFrame is None.")
|
27 |
|
28 |
+
print("\n=== Initializing Leaderboard ===", flush=True)
|
29 |
+
print(f"DataFrame shape: {dataframe.shape}", flush=True)
|
30 |
+
print(f"DataFrame columns: {dataframe.columns.tolist()}", flush=True)
|
31 |
+
|
32 |
return Leaderboard(
|
33 |
value=dataframe,
|
34 |
select_columns=[c.name for c in fields(AutoEvalColumn) if not c.hidden],
|
|
|
42 |
|
43 |
def refresh_leaderboard():
|
44 |
"""Refresh leaderboard data from disk"""
|
45 |
+
print("\n=== Refreshing Leaderboard ===", flush=True)
|
46 |
try:
|
47 |
# Download latest results
|
48 |
+
print("Downloading latest results...", flush=True)
|
49 |
snapshot_download(
|
50 |
repo_id=RESULTS_REPO,
|
51 |
local_dir=EVAL_RESULTS_PATH,
|
|
|
54 |
etag_timeout=30,
|
55 |
token=TOKEN
|
56 |
)
|
57 |
+
print("Download complete", flush=True)
|
58 |
except Exception as e:
|
59 |
+
print(f"Error refreshing results: {e}", flush=True)
|
60 |
|
61 |
# Get fresh leaderboard data
|
62 |
+
print("Getting fresh leaderboard data...", flush=True)
|
63 |
df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
|
64 |
+
print(f"Got DataFrame with shape: {df.shape}", flush=True)
|
65 |
return init_leaderboard(df)
|
66 |
|
67 |
def run_perplexity_test(model_name, revision, precision):
|
68 |
"""Run perplexity evaluation on demand."""
|
69 |
+
print(f"\n=== Running Perplexity Test ===", flush=True)
|
70 |
+
print(f"Model: {model_name}", flush=True)
|
71 |
+
print(f"Revision: {revision}", flush=True)
|
72 |
+
print(f"Precision: {precision}", flush=True)
|
73 |
+
|
74 |
if not model_name:
|
75 |
return "Please enter a model name.", None
|
76 |
|
77 |
success, result = run_dynamic_perplexity_eval(model_name, revision, precision)
|
78 |
+
print(f"Evaluation result - Success: {success}, Result: {result}", flush=True)
|
79 |
|
80 |
if success:
|
81 |
# Get updated leaderboard
|
82 |
+
print("Refreshing leaderboard...", flush=True)
|
83 |
new_leaderboard = refresh_leaderboard()
|
84 |
+
print("Leaderboard refresh complete", flush=True)
|
85 |
return f"✅ Perplexity evaluation completed!\nPerplexity: {result:.4f}", new_leaderboard
|
86 |
else:
|
87 |
return f"❌ Evaluation failed: {result}", None
|
src/leaderboard/read_evals.py
CHANGED
@@ -76,6 +76,9 @@ class EvalResult:
|
|
76 |
|
77 |
def to_dict(self):
|
78 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
|
|
|
|
|
|
79 |
# Calculate average, handling perplexity (lower is better)
|
80 |
scores = []
|
81 |
perplexity_score = None
|
@@ -90,6 +93,7 @@ class EvalResult:
|
|
90 |
scores.append(score)
|
91 |
|
92 |
average = sum(scores) / len(scores) if scores else 0
|
|
|
93 |
|
94 |
data_dict = {
|
95 |
"eval_name": self.eval_name, # not a column, just a save name,
|
@@ -111,13 +115,17 @@ class EvalResult:
|
|
111 |
# Add perplexity score with the exact column name from Tasks
|
112 |
if perplexity_score is not None:
|
113 |
data_dict[Tasks.task0.value.col_name] = perplexity_score
|
|
|
114 |
else:
|
115 |
data_dict[Tasks.task0.value.col_name] = None
|
|
|
116 |
|
|
|
117 |
return data_dict
|
118 |
|
119 |
def get_raw_eval_results(results_path: str) -> list[EvalResult]:
|
120 |
"""From the path of the results folder root, extract all perplexity results"""
|
|
|
121 |
model_result_filepaths = []
|
122 |
|
123 |
for root, _, files in os.walk(results_path):
|
@@ -128,29 +136,39 @@ def get_raw_eval_results(results_path: str) -> list[EvalResult]:
|
|
128 |
for file in files:
|
129 |
model_result_filepaths.append(os.path.join(root, file))
|
130 |
|
|
|
|
|
131 |
eval_results = {}
|
132 |
for model_result_filepath in model_result_filepaths:
|
133 |
try:
|
|
|
134 |
# Creation of result
|
135 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
|
|
136 |
|
137 |
# Store results of same eval together
|
138 |
eval_name = eval_result.eval_name
|
139 |
if eval_name in eval_results.keys():
|
140 |
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
|
|
141 |
else:
|
142 |
eval_results[eval_name] = eval_result
|
|
|
143 |
except Exception as e:
|
144 |
-
print(f"Error processing result file {model_result_filepath}: {e}")
|
145 |
continue
|
146 |
|
147 |
results = []
|
|
|
148 |
for v in eval_results.values():
|
149 |
try:
|
|
|
150 |
v.to_dict() # we test if the dict version is complete
|
151 |
results.append(v)
|
152 |
-
|
153 |
-
|
|
|
154 |
continue
|
155 |
|
|
|
156 |
return results
|
|
|
76 |
|
77 |
def to_dict(self):
|
78 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
79 |
+
print(f"\nProcessing result for model: {self.full_model}", flush=True)
|
80 |
+
print(f"Raw results: {self.results}", flush=True)
|
81 |
+
|
82 |
# Calculate average, handling perplexity (lower is better)
|
83 |
scores = []
|
84 |
perplexity_score = None
|
|
|
93 |
scores.append(score)
|
94 |
|
95 |
average = sum(scores) / len(scores) if scores else 0
|
96 |
+
print(f"Calculated average score: {average}", flush=True)
|
97 |
|
98 |
data_dict = {
|
99 |
"eval_name": self.eval_name, # not a column, just a save name,
|
|
|
115 |
# Add perplexity score with the exact column name from Tasks
|
116 |
if perplexity_score is not None:
|
117 |
data_dict[Tasks.task0.value.col_name] = perplexity_score
|
118 |
+
print(f"Added perplexity score {perplexity_score} under column {Tasks.task0.value.col_name}", flush=True)
|
119 |
else:
|
120 |
data_dict[Tasks.task0.value.col_name] = None
|
121 |
+
print(f"No perplexity score found for column {Tasks.task0.value.col_name}", flush=True)
|
122 |
|
123 |
+
print(f"Final data dict keys: {list(data_dict.keys())}", flush=True)
|
124 |
return data_dict
|
125 |
|
126 |
def get_raw_eval_results(results_path: str) -> list[EvalResult]:
|
127 |
"""From the path of the results folder root, extract all perplexity results"""
|
128 |
+
print(f"\nSearching for result files in: {results_path}", flush=True)
|
129 |
model_result_filepaths = []
|
130 |
|
131 |
for root, _, files in os.walk(results_path):
|
|
|
136 |
for file in files:
|
137 |
model_result_filepaths.append(os.path.join(root, file))
|
138 |
|
139 |
+
print(f"Found {len(model_result_filepaths)} result files", flush=True)
|
140 |
+
|
141 |
eval_results = {}
|
142 |
for model_result_filepath in model_result_filepaths:
|
143 |
try:
|
144 |
+
print(f"\nProcessing file: {model_result_filepath}", flush=True)
|
145 |
# Creation of result
|
146 |
eval_result = EvalResult.init_from_json_file(model_result_filepath)
|
147 |
+
print(f"Created result object for: {eval_result.full_model}", flush=True)
|
148 |
|
149 |
# Store results of same eval together
|
150 |
eval_name = eval_result.eval_name
|
151 |
if eval_name in eval_results.keys():
|
152 |
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
|
153 |
+
print(f"Updated existing result for {eval_name}", flush=True)
|
154 |
else:
|
155 |
eval_results[eval_name] = eval_result
|
156 |
+
print(f"Added new result for {eval_name}", flush=True)
|
157 |
except Exception as e:
|
158 |
+
print(f"Error processing result file {model_result_filepath}: {e}", flush=True)
|
159 |
continue
|
160 |
|
161 |
results = []
|
162 |
+
print(f"\nProcessing {len(eval_results)} evaluation results", flush=True)
|
163 |
for v in eval_results.values():
|
164 |
try:
|
165 |
+
print(f"\nConverting result to dict for: {v.full_model}", flush=True)
|
166 |
v.to_dict() # we test if the dict version is complete
|
167 |
results.append(v)
|
168 |
+
print("Successfully converted and added result", flush=True)
|
169 |
+
except KeyError as e:
|
170 |
+
print(f"Error converting result to dict: {e}", flush=True)
|
171 |
continue
|
172 |
|
173 |
+
print(f"\nReturning {len(results)} processed results", flush=True)
|
174 |
return results
|
src/populate.py
CHANGED
@@ -5,31 +5,56 @@ from src.leaderboard.read_evals import get_raw_eval_results
|
|
5 |
|
6 |
def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
7 |
"""Creates a dataframe from all the individual experiment results"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
try:
|
9 |
-
raw_data = get_raw_eval_results(results_path)
|
10 |
-
all_data_json = [v.to_dict() for v in raw_data]
|
11 |
-
|
12 |
-
if not all_data_json:
|
13 |
-
# Create empty DataFrame with correct columns
|
14 |
-
empty_df = pd.DataFrame(columns=cols)
|
15 |
-
# Ensure correct column types
|
16 |
-
empty_df[AutoEvalColumn.average.name] = pd.Series(dtype=float)
|
17 |
-
for col in benchmark_cols:
|
18 |
-
empty_df[col] = pd.Series(dtype=float)
|
19 |
-
return empty_df
|
20 |
-
|
21 |
-
df = pd.DataFrame.from_records(all_data_json)
|
22 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
23 |
-
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
df = df[
|
27 |
-
|
28 |
-
except
|
29 |
-
print(f"
|
30 |
-
|
|
|
|
|
31 |
empty_df = pd.DataFrame(columns=cols)
|
32 |
empty_df[AutoEvalColumn.average.name] = pd.Series(dtype=float)
|
33 |
for col in benchmark_cols:
|
34 |
empty_df[col] = pd.Series(dtype=float)
|
35 |
return empty_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
7 |
"""Creates a dataframe from all the individual experiment results"""
|
8 |
+
print("\n=== Starting leaderboard creation ===", flush=True)
|
9 |
+
print(f"Looking for results in: {results_path}", flush=True)
|
10 |
+
print(f"Expected columns: {cols}", flush=True)
|
11 |
+
print(f"Benchmark columns: {benchmark_cols}", flush=True)
|
12 |
+
|
13 |
+
raw_data = get_raw_eval_results(results_path)
|
14 |
+
print(f"\nFound {len(raw_data)} raw results", flush=True)
|
15 |
+
|
16 |
+
all_data_json = [v.to_dict() for v in raw_data]
|
17 |
+
print(f"\nConverted to {len(all_data_json)} JSON records", flush=True)
|
18 |
+
if all_data_json:
|
19 |
+
print("Sample record keys:", list(all_data_json[0].keys()), flush=True)
|
20 |
+
|
21 |
+
if not all_data_json:
|
22 |
+
print("\nNo data found, creating empty DataFrame", flush=True)
|
23 |
+
empty_df = pd.DataFrame(columns=cols)
|
24 |
+
# Ensure correct column types
|
25 |
+
empty_df[AutoEvalColumn.average.name] = pd.Series(dtype=float)
|
26 |
+
for col in benchmark_cols:
|
27 |
+
empty_df[col] = pd.Series(dtype=float)
|
28 |
+
return empty_df
|
29 |
+
|
30 |
+
df = pd.DataFrame.from_records(all_data_json)
|
31 |
+
print("\nCreated DataFrame with columns:", df.columns.tolist(), flush=True)
|
32 |
+
print("DataFrame shape:", df.shape, flush=True)
|
33 |
+
|
34 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
36 |
+
print("\nSorted DataFrame by average", flush=True)
|
37 |
+
except KeyError as e:
|
38 |
+
print(f"\nError sorting DataFrame: {e}", flush=True)
|
39 |
+
print("Available columns:", df.columns.tolist(), flush=True)
|
40 |
|
41 |
+
try:
|
42 |
+
df = df[cols].round(decimals=2)
|
43 |
+
print("\nSelected and rounded columns", flush=True)
|
44 |
+
except KeyError as e:
|
45 |
+
print(f"\nError selecting columns: {e}", flush=True)
|
46 |
+
print("Requested columns:", cols, flush=True)
|
47 |
+
print("Available columns:", df.columns.tolist(), flush=True)
|
48 |
+
# Create empty DataFrame with correct structure
|
49 |
empty_df = pd.DataFrame(columns=cols)
|
50 |
empty_df[AutoEvalColumn.average.name] = pd.Series(dtype=float)
|
51 |
for col in benchmark_cols:
|
52 |
empty_df[col] = pd.Series(dtype=float)
|
53 |
return empty_df
|
54 |
+
|
55 |
+
# filter out if perplexity hasn't been evaluated
|
56 |
+
df = df[has_no_nan_values(df, benchmark_cols)]
|
57 |
+
print("\nFinal DataFrame shape after filtering:", df.shape, flush=True)
|
58 |
+
print("Final columns:", df.columns.tolist(), flush=True)
|
59 |
+
|
60 |
+
return df
|