Spaces:
Runtime error
Runtime error
File size: 11,823 Bytes
359f755 1dd4b6a 4864926 359f755 77c0f20 359f755 77c0f20 359f755 77c0f20 359f755 77c0f20 359f755 77c0f20 359f755 536d515 21bc425 536d515 21bc425 536d515 ce8066d 77c0f20 c99a049 21bc425 77c0f20 21bc425 77c0f20 c99a049 21bc425 77c0f20 21bc425 77c0f20 536d515 77c0f20 21bc425 1dd4b6a 21bc425 536d515 359f755 21bc425 536d515 21bc425 359f755 77c0f20 536d515 359f755 1bac1ed 359f755 1bac1ed 359f755 536d515 ce8066d 359f755 c99a049 536d515 36b1a23 c99a049 536d515 359f755 c99a049 536d515 c99a049 536d515 c99a049 536d515 c99a049 359f755 536d515 359f755 536d515 4864926 359f755 536d515 ce8066d 536d515 359f755 536d515 359f755 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import glob
import json
import math
import os
from dataclasses import dataclass
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
from src.submission.check_validity import is_model_on_hub
from src.evaluation.model_trace_eval import compute_model_trace_p_value
from src.evaluation.initialize_models import is_model_allowed
@dataclass
class EvalResult:
"""Represents one perplexity evaluation result."""
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
results: dict
precision: Precision = Precision.Unknown
model_type: ModelType = ModelType.PT # Default to pretrained
weight_type: WeightType = WeightType.Original
architecture: str = "Unknown"
still_on_hub: bool = False
@classmethod
def init_from_json_file(self, json_filepath):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
config = data.get("config")
# Precision
precision = Precision.from_str(config.get("model_dtype"))
# Get model and org
org_and_model = config.get("model_name", config.get("model_args", None))
org_and_model = org_and_model.split("/", 1)
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
result_key = f"{model}_{precision.value.name}"
else:
org = org_and_model[0]
model = org_and_model[1]
result_key = f"{org}_{model}_{precision.value.name}"
full_model = "/".join(org_and_model)
still_on_hub, _, model_config = is_model_on_hub(
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
)
architecture = "?"
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
# Extract perplexity result
results = {}
if "perplexity" in data["results"]:
results["perplexity"] = data["results"]["perplexity"]["perplexity"]
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
precision=precision,
revision=config.get("model_sha", ""),
still_on_hub=still_on_hub,
architecture=architecture
)
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
import sys
sys.stderr.write(f"\n=== PROCESSING RESULT TO_DICT ===\n")
sys.stderr.write(f"Processing result for model: {self.full_model}\n")
sys.stderr.write(f"Raw results: {self.results}\n")
sys.stderr.write(f"Model precision: {self.precision}\n")
sys.stderr.write(f"Model type: {self.model_type}\n")
sys.stderr.write(f"Weight type: {self.weight_type}\n")
sys.stderr.flush()
# Calculate average, handling perplexity (lower is better)
scores = []
perplexity_score = None
sys.stderr.write(f"Available tasks: {[task.name for task in Tasks]}\n")
for task in Tasks:
sys.stderr.write(f"Looking for task: {task.value.benchmark} in results\n")
if task.value.benchmark in self.results:
score = self.results[task.value.benchmark]
perplexity_score = score # Save the raw score
sys.stderr.write(f"Found score for {task.value.benchmark}: {score}\n")
# Convert perplexity to a 0-100 scale where lower perplexity = higher score
# Using a log scale since perplexity can vary widely
# Cap at 100 for very low perplexity and 0 for very high perplexity
score = max(0, min(100, 100 * (1 - math.log(score) / 10)))
scores.append(score)
sys.stderr.write(f"Converted score: {score}\n")
else:
sys.stderr.write(f"Task {task.value.benchmark} not found in results\n")
sys.stderr.flush()
average = sum(scores) / len(scores) if scores else 0
sys.stderr.write(f"Calculated average score: {average}\n")
sys.stderr.flush()
# Create data dictionary with comprehensive debugging
data_dict = {}
# Add core columns
data_dict["eval_name"] = self.eval_name
data_dict[AutoEvalColumn.precision.name] = self.precision.value.name
data_dict[AutoEvalColumn.model_type.name] = self.model_type.value.name
data_dict[AutoEvalColumn.model_type_symbol.name] = self.model_type.value.symbol
data_dict[AutoEvalColumn.weight_type.name] = self.weight_type.value.name
data_dict[AutoEvalColumn.architecture.name] = self.architecture
data_dict[AutoEvalColumn.model.name] = make_clickable_model(self.full_model)
data_dict[AutoEvalColumn.revision.name] = self.revision
data_dict[AutoEvalColumn.average.name] = average
data_dict[AutoEvalColumn.still_on_hub.name] = self.still_on_hub
# Add default values for missing model info
data_dict[AutoEvalColumn.license.name] = "Unknown"
data_dict[AutoEvalColumn.params.name] = 0
data_dict[AutoEvalColumn.likes.name] = 0
# Compute model trace p-value
sys.stderr.write(f"\n🧬 COMPUTING MODEL TRACE P-VALUE FOR: {self.full_model}\n")
sys.stderr.write(f" - Revision: {self.revision if self.revision else 'main'}\n")
sys.stderr.write(f" - Precision: {self.precision.value.name.lower()}\n")
sys.stderr.flush()
try:
model_trace_p_value = compute_model_trace_p_value(
self.full_model,
self.revision if self.revision else "main",
self.precision.value.name.lower()
)
if model_trace_p_value is not None:
sys.stderr.write(f"✅ Model trace p-value computed successfully: {model_trace_p_value}\n")
else:
sys.stderr.write(f"⚠️ Model trace p-value is None (computation failed or not available)\n")
except Exception as e:
sys.stderr.write(f"💥 Exception during model trace p-value computation: {e}\n")
import traceback
sys.stderr.write(f"Traceback: {traceback.format_exc()}\n")
model_trace_p_value = None
data_dict[AutoEvalColumn.model_trace_p_value.name] = model_trace_p_value
sys.stderr.write(f"📝 Added to data_dict: {AutoEvalColumn.model_trace_p_value.name} = {model_trace_p_value}\n")
sys.stderr.flush()
sys.stderr.write(f"Created base data_dict with {len(data_dict)} columns\n")
sys.stderr.flush()
# Add task-specific scores
for task in Tasks:
task_col_name = task.value.col_name
if task.value.benchmark in self.results:
task_score = self.results[task.value.benchmark]
data_dict[task_col_name] = task_score
sys.stderr.write(f"Added task score: {task_col_name} = {task_score}\n")
else:
data_dict[task_col_name] = None
sys.stderr.write(f"Added None for missing task: {task_col_name}\n")
sys.stderr.flush()
sys.stderr.write(f"Final data dict has {len(data_dict)} columns: {list(data_dict.keys())}\n")
sys.stderr.write(f"=== END PROCESSING RESULT TO_DICT ===\n")
sys.stderr.flush()
return data_dict
def get_raw_eval_results(results_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all perplexity results"""
import sys
sys.stderr.write(f"\nSearching for result files in: {results_path}\n")
sys.stderr.flush()
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# Process all JSON files, regardless of other files in the directory
for file in files:
if file.endswith(".json"):
model_result_filepaths.append(os.path.join(root, file))
sys.stderr.write(f"Found {len(model_result_filepaths)} result files\n")
sys.stderr.flush()
eval_results = {}
for model_result_filepath in model_result_filepaths:
try:
sys.stderr.write(f"\nProcessing file: {model_result_filepath}\n")
sys.stderr.flush()
# Quick pre-check: Try to extract model name from file before full processing
try:
with open(model_result_filepath, 'r') as f:
data = json.load(f)
config = data.get("config", {})
model_name = config.get("model_name", "")
if model_name and not is_model_allowed(model_name):
sys.stderr.write(f"⏭️ Skipping non-allowed model file: {model_result_filepath} (model: {model_name})\n")
sys.stderr.flush()
continue
except Exception as e:
sys.stderr.write(f"⚠️ Error pre-checking file {model_result_filepath}: {e}\n")
sys.stderr.flush()
continue
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath)
sys.stderr.write(f"Created result object for: {eval_result.full_model}\n")
sys.stderr.flush()
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
sys.stderr.write(f"Updated existing result for {eval_name}\n")
sys.stderr.flush()
else:
eval_results[eval_name] = eval_result
sys.stderr.write(f"Added new result for {eval_name}\n")
sys.stderr.flush()
except Exception as e:
sys.stderr.write(f"Error processing result file {model_result_filepath}: {e}\n")
import traceback
sys.stderr.write(f"Traceback: {traceback.format_exc()}\n")
sys.stderr.flush()
continue
results = []
sys.stderr.write(f"\nProcessing {len(eval_results)} evaluation results\n")
sys.stderr.flush()
for v in eval_results.values():
try:
sys.stderr.write(f"\nConverting result to dict for: {v.full_model}\n")
sys.stderr.flush()
# Filter to only allowed models
if not is_model_allowed(v.full_model):
sys.stderr.write(f"⏭️ Skipping non-allowed model: {v.full_model}\n")
sys.stderr.flush()
continue
v.to_dict() # we test if the dict version is complete
results.append(v)
sys.stderr.write("Successfully converted and added result\n")
sys.stderr.flush()
except KeyError as e:
sys.stderr.write(f"Error converting result to dict: {e}\n")
import traceback
sys.stderr.write(f"Traceback: {traceback.format_exc()}\n")
sys.stderr.flush()
continue
sys.stderr.write(f"\nReturning {len(results)} processed results\n")
sys.stderr.flush()
return results
|