File size: 11,823 Bytes
359f755
 
 
 
 
 
 
 
 
1dd4b6a
4864926
359f755
 
 
77c0f20
359f755
 
 
 
 
 
 
77c0f20
 
 
359f755
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77c0f20
359f755
77c0f20
 
359f755
 
 
 
 
 
 
77c0f20
 
359f755
 
 
 
 
 
536d515
 
21bc425
 
536d515
21bc425
 
 
536d515
ce8066d
77c0f20
 
c99a049
21bc425
 
77c0f20
21bc425
77c0f20
 
c99a049
21bc425
77c0f20
 
 
 
 
21bc425
 
 
 
77c0f20
 
536d515
 
77c0f20
21bc425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd4b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21bc425
 
 
 
 
 
 
 
 
 
 
 
 
536d515
359f755
21bc425
 
536d515
21bc425
359f755
 
77c0f20
 
536d515
 
 
 
 
359f755
 
 
1bac1ed
359f755
1bac1ed
 
359f755
536d515
 
ce8066d
359f755
 
c99a049
536d515
 
36b1a23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c99a049
 
536d515
 
359f755
c99a049
 
 
 
536d515
 
c99a049
 
536d515
 
c99a049
536d515
 
 
 
c99a049
359f755
 
536d515
 
 
359f755
 
536d515
 
4864926
 
 
 
 
 
 
359f755
 
536d515
 
ce8066d
536d515
 
 
 
359f755
 
536d515
 
359f755
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import glob
import json
import math
import os
from dataclasses import dataclass

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
from src.submission.check_validity import is_model_on_hub
from src.evaluation.model_trace_eval import compute_model_trace_p_value
from src.evaluation.initialize_models import is_model_allowed

@dataclass
class EvalResult:
    """Represents one perplexity evaluation result."""
    eval_name: str # org_model_precision (uid)
    full_model: str # org/model (path on hub)
    org: str 
    model: str
    revision: str # commit hash, "" if main
    results: dict
    precision: Precision = Precision.Unknown
    model_type: ModelType = ModelType.PT  # Default to pretrained
    weight_type: WeightType = WeightType.Original
    architecture: str = "Unknown"
    still_on_hub: bool = False

    @classmethod
    def init_from_json_file(self, json_filepath):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            data = json.load(fp)

        config = data.get("config")

        # Precision
        precision = Precision.from_str(config.get("model_dtype"))

        # Get model and org
        org_and_model = config.get("model_name", config.get("model_args", None))
        org_and_model = org_and_model.split("/", 1)

        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
            result_key = f"{model}_{precision.value.name}"
        else:
            org = org_and_model[0]
            model = org_and_model[1]
            result_key = f"{org}_{model}_{precision.value.name}"
        full_model = "/".join(org_and_model)

        still_on_hub, _, model_config = is_model_on_hub(
            full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
        )
        architecture = "?"
        if model_config is not None:
            architectures = getattr(model_config, "architectures", None)
            if architectures:
                architecture = ";".join(architectures)

        # Extract perplexity result
        results = {}
        if "perplexity" in data["results"]:
            results["perplexity"] = data["results"]["perplexity"]["perplexity"]

        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=results,
            precision=precision,
            revision=config.get("model_sha", ""),
            still_on_hub=still_on_hub,
            architecture=architecture
        )

    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        import sys
        
        sys.stderr.write(f"\n=== PROCESSING RESULT TO_DICT ===\n")
        sys.stderr.write(f"Processing result for model: {self.full_model}\n")
        sys.stderr.write(f"Raw results: {self.results}\n")
        sys.stderr.write(f"Model precision: {self.precision}\n")
        sys.stderr.write(f"Model type: {self.model_type}\n")
        sys.stderr.write(f"Weight type: {self.weight_type}\n")
        sys.stderr.flush()
        
        # Calculate average, handling perplexity (lower is better)
        scores = []
        perplexity_score = None
        sys.stderr.write(f"Available tasks: {[task.name for task in Tasks]}\n")
        
        for task in Tasks:
            sys.stderr.write(f"Looking for task: {task.value.benchmark} in results\n")
            if task.value.benchmark in self.results:
                score = self.results[task.value.benchmark]
                perplexity_score = score  # Save the raw score
                sys.stderr.write(f"Found score for {task.value.benchmark}: {score}\n")
                # Convert perplexity to a 0-100 scale where lower perplexity = higher score
                # Using a log scale since perplexity can vary widely
                # Cap at 100 for very low perplexity and 0 for very high perplexity
                score = max(0, min(100, 100 * (1 - math.log(score) / 10)))
                scores.append(score)
                sys.stderr.write(f"Converted score: {score}\n")
            else:
                sys.stderr.write(f"Task {task.value.benchmark} not found in results\n")
            sys.stderr.flush()
        
        average = sum(scores) / len(scores) if scores else 0
        sys.stderr.write(f"Calculated average score: {average}\n")
        sys.stderr.flush()
        
        # Create data dictionary with comprehensive debugging
        data_dict = {}
        
        # Add core columns
        data_dict["eval_name"] = self.eval_name
        data_dict[AutoEvalColumn.precision.name] = self.precision.value.name
        data_dict[AutoEvalColumn.model_type.name] = self.model_type.value.name
        data_dict[AutoEvalColumn.model_type_symbol.name] = self.model_type.value.symbol
        data_dict[AutoEvalColumn.weight_type.name] = self.weight_type.value.name
        data_dict[AutoEvalColumn.architecture.name] = self.architecture
        data_dict[AutoEvalColumn.model.name] = make_clickable_model(self.full_model)
        data_dict[AutoEvalColumn.revision.name] = self.revision
        data_dict[AutoEvalColumn.average.name] = average
        data_dict[AutoEvalColumn.still_on_hub.name] = self.still_on_hub
        
        # Add default values for missing model info
        data_dict[AutoEvalColumn.license.name] = "Unknown"
        data_dict[AutoEvalColumn.params.name] = 0
        data_dict[AutoEvalColumn.likes.name] = 0
        
        # Compute model trace p-value
        sys.stderr.write(f"\n🧬 COMPUTING MODEL TRACE P-VALUE FOR: {self.full_model}\n")
        sys.stderr.write(f"   - Revision: {self.revision if self.revision else 'main'}\n")
        sys.stderr.write(f"   - Precision: {self.precision.value.name.lower()}\n")
        sys.stderr.flush()
        
        try:
            model_trace_p_value = compute_model_trace_p_value(
                self.full_model, 
                self.revision if self.revision else "main",
                self.precision.value.name.lower()
            )
            
            if model_trace_p_value is not None:
                sys.stderr.write(f"✅ Model trace p-value computed successfully: {model_trace_p_value}\n")
            else:
                sys.stderr.write(f"⚠️  Model trace p-value is None (computation failed or not available)\n")
                
        except Exception as e:
            sys.stderr.write(f"💥 Exception during model trace p-value computation: {e}\n")
            import traceback
            sys.stderr.write(f"Traceback: {traceback.format_exc()}\n")
            model_trace_p_value = None
            
        data_dict[AutoEvalColumn.model_trace_p_value.name] = model_trace_p_value
        sys.stderr.write(f"📝 Added to data_dict: {AutoEvalColumn.model_trace_p_value.name} = {model_trace_p_value}\n")
        sys.stderr.flush()
        
        sys.stderr.write(f"Created base data_dict with {len(data_dict)} columns\n")
        sys.stderr.flush()

        # Add task-specific scores
        for task in Tasks:
            task_col_name = task.value.col_name
            if task.value.benchmark in self.results:
                task_score = self.results[task.value.benchmark]
                data_dict[task_col_name] = task_score
                sys.stderr.write(f"Added task score: {task_col_name} = {task_score}\n")
            else:
                data_dict[task_col_name] = None
                sys.stderr.write(f"Added None for missing task: {task_col_name}\n")
            sys.stderr.flush()

        sys.stderr.write(f"Final data dict has {len(data_dict)} columns: {list(data_dict.keys())}\n")
        sys.stderr.write(f"=== END PROCESSING RESULT TO_DICT ===\n")
        sys.stderr.flush()
        
        return data_dict

def get_raw_eval_results(results_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all perplexity results"""
    import sys
    
    sys.stderr.write(f"\nSearching for result files in: {results_path}\n")
    sys.stderr.flush()
    
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # Process all JSON files, regardless of other files in the directory
        for file in files:
            if file.endswith(".json"):
                model_result_filepaths.append(os.path.join(root, file))

    sys.stderr.write(f"Found {len(model_result_filepaths)} result files\n")
    sys.stderr.flush()

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        try:
            sys.stderr.write(f"\nProcessing file: {model_result_filepath}\n")
            sys.stderr.flush()
            
            # Quick pre-check: Try to extract model name from file before full processing
            try:
                with open(model_result_filepath, 'r') as f:
                    data = json.load(f)
                config = data.get("config", {})
                model_name = config.get("model_name", "")
                
                if model_name and not is_model_allowed(model_name):
                    sys.stderr.write(f"⏭️ Skipping non-allowed model file: {model_result_filepath} (model: {model_name})\n")
                    sys.stderr.flush()
                    continue
                    
            except Exception as e:
                sys.stderr.write(f"⚠️ Error pre-checking file {model_result_filepath}: {e}\n")
                sys.stderr.flush()
                continue
            
            # Creation of result
            eval_result = EvalResult.init_from_json_file(model_result_filepath)
            sys.stderr.write(f"Created result object for: {eval_result.full_model}\n")
            sys.stderr.flush()

            # Store results of same eval together
            eval_name = eval_result.eval_name
            if eval_name in eval_results.keys():
                eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
                sys.stderr.write(f"Updated existing result for {eval_name}\n")
                sys.stderr.flush()
            else:
                eval_results[eval_name] = eval_result
                sys.stderr.write(f"Added new result for {eval_name}\n")
                sys.stderr.flush()
        except Exception as e:
            sys.stderr.write(f"Error processing result file {model_result_filepath}: {e}\n")
            import traceback
            sys.stderr.write(f"Traceback: {traceback.format_exc()}\n")
            sys.stderr.flush()
            continue

    results = []
    sys.stderr.write(f"\nProcessing {len(eval_results)} evaluation results\n")
    sys.stderr.flush()
    
    for v in eval_results.values():
        try:
            sys.stderr.write(f"\nConverting result to dict for: {v.full_model}\n")
            sys.stderr.flush()
            
            # Filter to only allowed models
            if not is_model_allowed(v.full_model):
                sys.stderr.write(f"⏭️ Skipping non-allowed model: {v.full_model}\n")
                sys.stderr.flush()
                continue
            
            v.to_dict() # we test if the dict version is complete
            results.append(v)
            sys.stderr.write("Successfully converted and added result\n")
            sys.stderr.flush()
        except KeyError as e:
            sys.stderr.write(f"Error converting result to dict: {e}\n")
            import traceback
            sys.stderr.write(f"Traceback: {traceback.format_exc()}\n")
            sys.stderr.flush()
            continue

    sys.stderr.write(f"\nReturning {len(results)} processed results\n")
    sys.stderr.flush()
    return results