Spaces:
Runtime error
Runtime error
File size: 11,110 Bytes
359f755 de8f813 24c8512 359f755 1b2d49a 359f755 24c8512 77c0f20 70ea05e 359f755 f02d36b 1dd4b6a f02d36b 1dd4b6a f02d36b 1dd4b6a f02d36b 1dd4b6a 77c0f20 1dd4b6a f02d36b 1dd4b6a f02d36b 1dd4b6a ce8066d f02d36b 1dd4b6a f02d36b 1dd4b6a f02d36b 359f755 70ea05e 536d515 3a2ac99 4864926 ce8066d 70ea05e 4864926 70ea05e 536d515 21bc425 536d515 86c1853 3a2ac99 1dd4b6a f02d36b 1dd4b6a f02d36b 3a2ac99 1dd4b6a 4864926 f02d36b 86c1853 536d515 86c1853 536d515 86c1853 70ea05e 24c8512 77c0f20 24c8512 de8f813 24c8512 77c0f20 24c8512 70ea05e 4864926 1dd4b6a 4864926 1dd4b6a 4864926 1dd4b6a f02d36b 77c0f20 1dd4b6a 77c0f20 1dd4b6a 359f755 f02d36b 1dd4b6a f02d36b 359f755 77c0f20 359f755 77c0f20 4864926 536d515 359f755 4864926 77c0f20 359f755 70ea05e 536d515 70ea05e 77c0f20 70ea05e f02d36b 1dd4b6a f02d36b 536d515 3a2ac99 f02d36b 4864926 3a2ac99 4864926 3a2ac99 4864926 3a2ac99 4864926 f02d36b 536d515 77c0f20 70ea05e 77c0f20 86c1853 359f755 1dd4b6a 77c0f20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import gradio as gr
import pandas as pd
from huggingface_hub import snapshot_download, create_repo
from huggingface_hub.utils import RepositoryNotFoundError
import os
from src.about import (
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
AutoEvalColumn,
fields,
)
from src.envs import API, EVAL_RESULTS_PATH, RESULTS_REPO, TOKEN, OWNER
from src.populate import get_leaderboard_df
from src.evaluation.dynamic_eval import run_dynamic_perplexity_eval
def create_results_dataframe():
"""Create and return the results DataFrame for display"""
import sys
sys.stderr.write("\nπ CREATE_RESULTS_DATAFRAME CALLED\n")
sys.stderr.flush()
df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
sys.stderr.write(f"π Retrieved leaderboard df: {df.shape if df is not None else 'None'}\n")
sys.stderr.flush()
if df is None or df.empty:
sys.stderr.write("β οΈ DataFrame is None or empty, returning empty DataFrame\n")
sys.stderr.flush()
# Return empty DataFrame with proper columns
return pd.DataFrame(columns=["Model", "Perplexity", "Match P-Value", "Average Score", "Type", "Precision"])
sys.stderr.write(f"π Original DataFrame columns: {list(df.columns)}\n")
sys.stderr.flush()
# Check if required columns exist
required_cols = [
AutoEvalColumn.model.name,
"Perplexity",
AutoEvalColumn.model_trace_p_value.name,
AutoEvalColumn.average.name,
AutoEvalColumn.model_type.name,
AutoEvalColumn.precision.name,
]
missing_cols = [col for col in required_cols if col not in df.columns]
if missing_cols:
sys.stderr.write(f"β οΈ Missing columns in DataFrame: {missing_cols}\n")
sys.stderr.flush()
# Add missing columns with default values
for col in missing_cols:
if col == AutoEvalColumn.model_trace_p_value.name:
df[col] = None
sys.stderr.write(f"β Added {col} column with None values\n")
# Select and rename columns for display
try:
display_df = df[required_cols].copy()
sys.stderr.write(f"β
Selected columns successfully: {list(display_df.columns)}\n")
except Exception as e:
sys.stderr.write(f"π₯ Error selecting columns: {e}\n")
sys.stderr.flush()
return pd.DataFrame(columns=["Model", "Perplexity", "Match P-Value", "Average Score", "Type", "Precision"])
# Rename columns for better display
display_df.columns = ["Model", "Perplexity", "Match P-Value", "Average Score", "Type", "Precision"]
sys.stderr.write(f"π― Final display DataFrame shape: {display_df.shape}\n")
sys.stderr.write(f"π― Final columns: {list(display_df.columns)}\n")
# Check p-value column
if "Match P-Value" in display_df.columns:
p_value_stats = display_df["Match P-Value"].describe()
sys.stderr.write(f"π P-Value column stats:\n{p_value_stats}\n")
sys.stderr.flush()
return display_df
def run_perplexity_test(model_name, revision, precision):
"""Run perplexity evaluation on demand."""
import sys
import traceback
import gradio as gr
from src.evaluation.initialize_models import is_model_allowed
if not model_name:
return "Please select a model.", gr.update(), gr.update()
if not is_model_allowed(model_name):
return f"β Model '{model_name}' is not in the allowed list. Please select from the dropdown.", gr.update(), gr.update()
try:
# Use stderr for more reliable logging in HF Spaces
sys.stderr.write(f"\n=== RUNNING PERPLEXITY TEST ===\n")
sys.stderr.write(f"Model: {model_name}\n")
sys.stderr.write(f"Revision: {revision}\n")
sys.stderr.write(f"Precision: {precision}\n")
sys.stderr.flush()
success, result = run_dynamic_perplexity_eval(model_name, revision, precision)
sys.stderr.write(f"Evaluation result - Success: {success}, Result: {result}\n")
sys.stderr.flush()
if success:
sys.stderr.write("Evaluation succeeded - updating both results tables\n")
sys.stderr.flush()
# Get updated results (this will trigger model trace p-value computation for the new model)
sys.stderr.write("π Creating updated results DataFrame (may compute model trace p-values)...\n")
sys.stderr.flush()
updated_df = create_results_dataframe()
sys.stderr.write("β
Updated DataFrame created successfully\n")
sys.stderr.flush()
success_msg = f"""β
**Perplexity evaluation completed successfully!**
**Model**: {model_name}
**Perplexity Score**: {result:.4f}
π **Results have been saved and both tables have been updated!**
β° **Note**: Model trace p-value computation runs a full model comparison analysis and may take 10-30 minutes per model. Progress will appear in the logs."""
return success_msg, gr.update(value=updated_df), gr.update(value=updated_df)
else:
return f"β **Evaluation failed**: {result}", gr.update(), gr.update()
except Exception as e:
error_msg = str(e)
traceback_str = traceback.format_exc()
sys.stderr.write(f"Critical error in run_perplexity_test: {error_msg}\n")
sys.stderr.write(f"Traceback: {traceback_str}\n")
sys.stderr.flush()
return f"β **Critical error**: {error_msg}", gr.update(), gr.update()
# Initialize results repository and directory
try:
# Try to download existing repository
try:
snapshot_download(
repo_id=RESULTS_REPO,
local_dir=EVAL_RESULTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN
)
except RepositoryNotFoundError:
# Create the repository if it doesn't exist
print(f"Creating new results repository: {RESULTS_REPO}")
create_repo(
repo_id=RESULTS_REPO,
repo_type="dataset",
private=False,
token=TOKEN
)
# Create local directory
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
except Exception as e:
print(f"Error initializing results: {e}")
# Ensure local directory exists even if repo operations fail
os.makedirs(EVAL_RESULTS_PATH, exist_ok=True)
# Initialize allowed models
import sys
from src.evaluation.initialize_models import initialize_allowed_models, get_allowed_models
sys.stderr.write("\nπ STARTING GRADIO APP INITIALIZATION\n")
sys.stderr.write("π Initializing allowed models...\n")
sys.stderr.flush()
# Initialize the allowed models
initialize_allowed_models()
sys.stderr.write("π Creating initial results DataFrame...\n")
sys.stderr.flush()
RESULTS_DF = create_results_dataframe()
sys.stderr.write(f"β
Initial DataFrame created with shape: {RESULTS_DF.shape}\n")
sys.stderr.write(f"π Columns: {list(RESULTS_DF.columns)}\n")
sys.stderr.flush()
# Create the Gradio interface
sys.stderr.write("π¨ Creating Gradio interface...\n")
sys.stderr.flush()
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
Results", elem_id="results-tab", id=0):
gr.Markdown("## Model Evaluation Results")
results_table = gr.DataFrame(
value=RESULTS_DF,
headers=["Model", "Perplexity", "Match P-Value", "Average Score", "Type", "Precision"],
interactive=False,
wrap=False
)
with gr.TabItem("π About", elem_id="about-tab", id=1):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π§ͺ Test Model", elem_id="test-model-tab", id=2):
gr.Markdown("## Run Perplexity Test\n\nTest one of the supported models for perplexity evaluation.")
allowed_models = get_allowed_models()
with gr.Row():
with gr.Column():
model_name = gr.Dropdown(
choices=allowed_models,
label="Model name",
value=allowed_models[0] if allowed_models else None
)
revision = gr.Textbox(label="Revision", placeholder="main", value="main")
precision = gr.Dropdown(
choices=["float16", "bfloat16"],
label="Precision",
value="float16"
)
debug_mode = gr.Checkbox(label="Enable debug mode (more verbose logging)", value=True)
with gr.Column():
test_button = gr.Button("π Run Perplexity Test", variant="primary")
result = gr.Markdown()
gr.Markdown("## Live Results")
live_results_table = gr.DataFrame(
value=RESULTS_DF,
headers=["Model", "Perplexity", "Match P-Value", "Average Score", "Type", "Precision"],
interactive=False,
wrap=False
)
gr.Markdown("""
### Tips:
- **Check stderr logs** in HF Spaces for detailed debugging information
- **Results will update automatically** in the table above after evaluation completes
- **Available models**: Vicuna 7B v1.5, IBM Granite 7B Base, LLeMa 7B
- **Lower perplexity scores = better performance** (better at predicting text)
- **Model trace p-values are computed automatically** (may take 10-30 minutes)
### How it works:
1. Select a model from the dropdown
2. Click "Run Perplexity Test"
3. Wait for evaluation to complete (may take a few minutes for perplexity + longer for p-value)
4. Results will appear automatically in the table above!
""")
test_button.click(
run_perplexity_test,
[model_name, revision, precision],
[result, live_results_table, results_table]
)
sys.stderr.write("π― GRADIO INTERFACE SETUP COMPLETE\n")
sys.stderr.write("π LAUNCHING GRADIO APP WITH MODEL TRACING INTEGRATION\n")
sys.stderr.write("π Features enabled:\n")
sys.stderr.write(" - Perplexity evaluation\n")
sys.stderr.write(" - Model trace p-value computation (vs GPT-2 base)\n")
sys.stderr.write(" - Match statistic with alignment\n")
sys.stderr.write("π Ready to accept requests!\n")
sys.stderr.flush()
demo.queue(default_concurrency_limit=5).launch() |