Spaces:
Sleeping
Sleeping
deveix
commited on
Commit
·
08af9a0
1
Parent(s):
3dddc6f
fix
Browse files- app/main.py +21 -21
app/main.py
CHANGED
@@ -27,16 +27,16 @@ default_sample_rate=22050
|
|
27 |
def load(file_name, skip_seconds=0):
|
28 |
return librosa.load(file_name, sr=None, res_type='kaiser_fast')
|
29 |
|
30 |
-
|
31 |
-
#
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
#
|
37 |
-
|
38 |
|
39 |
-
|
40 |
|
41 |
def extract_features(X, sample_rate):
|
42 |
# Generate Mel-frequency cepstral coefficients (MFCCs) from a time series
|
@@ -187,22 +187,22 @@ pca = joblib.load('app/pca.pkl')
|
|
187 |
scaler = joblib.load('app/1713696947.894978_scaler.joblib')
|
188 |
label_encoder = joblib.load('app/1713696954.9487948_label_encoder.joblib')
|
189 |
|
190 |
-
def preprocess_audio(audio_data, rate):
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
|
196 |
-
|
197 |
-
|
198 |
|
199 |
-
|
200 |
-
|
201 |
|
202 |
-
|
203 |
-
|
204 |
|
205 |
-
|
206 |
|
207 |
# def preprocess_audio(audio_data, rate):
|
208 |
# audio_data = nr.reduce_noise(y=audio_data, sr=rate)
|
|
|
27 |
def load(file_name, skip_seconds=0):
|
28 |
return librosa.load(file_name, sr=None, res_type='kaiser_fast')
|
29 |
|
30 |
+
def preprocess_audio(audio_data, rate):
|
31 |
+
# Apply preprocessing steps
|
32 |
+
audio_data = nr.reduce_noise(y=audio_data, sr=rate)
|
33 |
+
audio_data = librosa.util.normalize(audio_data)
|
34 |
+
audio_data, _ = librosa.effects.trim(audio_data)
|
35 |
+
audio_data = librosa.resample(audio_data, orig_sr=rate, target_sr=default_sample_rate)
|
36 |
+
# audio_data = fix_length(audio_data)
|
37 |
+
rate = default_sample_rate
|
38 |
|
39 |
+
return audio_data, rate
|
40 |
|
41 |
def extract_features(X, sample_rate):
|
42 |
# Generate Mel-frequency cepstral coefficients (MFCCs) from a time series
|
|
|
187 |
scaler = joblib.load('app/1713696947.894978_scaler.joblib')
|
188 |
label_encoder = joblib.load('app/1713696954.9487948_label_encoder.joblib')
|
189 |
|
190 |
+
# def preprocess_audio(audio_data, rate):
|
191 |
+
# # Resample first if the target rate is lower to reduce data size for subsequent operations
|
192 |
+
# if rate > default_sample_rate:
|
193 |
+
# audio_data = librosa.resample(audio_data, orig_sr=rate, target_sr=default_sample_rate)
|
194 |
+
# rate = default_sample_rate
|
195 |
|
196 |
+
# # Trim silence before applying computationally expensive noise reduction
|
197 |
+
# audio_data, _ = librosa.effects.trim(audio_data)
|
198 |
|
199 |
+
# # Normalize the audio data
|
200 |
+
# audio_data = librosa.util.normalize(audio_data)
|
201 |
|
202 |
+
# # Apply noise reduction
|
203 |
+
# audio_data = nr.reduce_noise(y=audio_data, sr=rate)
|
204 |
|
205 |
+
# return audio_data, rate
|
206 |
|
207 |
# def preprocess_audio(audio_data, rate):
|
208 |
# audio_data = nr.reduce_noise(y=audio_data, sr=rate)
|