Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
update dataset upload method to include users with dashes in their usernames
#3
by
not-lain
- opened
- app.py +21 -52
- data_to_parquet.py +52 -0
app.py
CHANGED
@@ -1,14 +1,12 @@
|
|
1 |
import os
|
2 |
-
from datetime import datetime
|
3 |
import random
|
4 |
|
5 |
-
import
|
6 |
-
from huggingface_hub import HfApi, hf_hub_download, Repository
|
7 |
-
from huggingface_hub.repocard import metadata_load
|
8 |
|
9 |
import gradio as gr
|
10 |
-
from datasets import load_dataset
|
11 |
-
|
|
|
12 |
|
13 |
EXAM_DATASET_ID = os.getenv("EXAM_DATASET_ID") or "agents-course/unit_1_quiz"
|
14 |
EXAM_MAX_QUESTIONS = os.getenv("EXAM_MAX_QUESTIONS") or 10
|
@@ -16,13 +14,7 @@ EXAM_PASSING_SCORE = os.getenv("EXAM_PASSING_SCORE") or 0.7
|
|
16 |
|
17 |
ds = load_dataset(EXAM_DATASET_ID, split="train")
|
18 |
|
19 |
-
|
20 |
-
CERTIFIED_USERS_FILENAME = "certified_students.csv"
|
21 |
-
CERTIFIED_USERS_DIR = "certificates"
|
22 |
-
repo = Repository(
|
23 |
-
local_dir=CERTIFIED_USERS_DIR, clone_from=DATASET_REPO_URL, use_auth_token=os.getenv("HF_TOKEN")
|
24 |
-
)
|
25 |
-
|
26 |
# Convert dataset to a list of dicts and randomly sort
|
27 |
quiz_data = ds.to_pandas().to_dict("records")
|
28 |
random.shuffle(quiz_data)
|
@@ -66,24 +58,6 @@ def on_user_logged_in(token: gr.OAuthToken | None):
|
|
66 |
None, # no token
|
67 |
]
|
68 |
|
69 |
-
def add_certified_user(hf_username, pass_percentage, submission_time):
|
70 |
-
"""
|
71 |
-
Add the certified user to the database
|
72 |
-
"""
|
73 |
-
print("ADD CERTIFIED USER")
|
74 |
-
repo.git_pull()
|
75 |
-
history = pd.read_csv(os.path.join(CERTIFIED_USERS_DIR, CERTIFIED_USERS_FILENAME))
|
76 |
-
|
77 |
-
# Check if this hf_username is already in our dataset:
|
78 |
-
check = history.loc[history['hf_username'] == hf_username]
|
79 |
-
if not check.empty:
|
80 |
-
history = history.drop(labels=check.index[0], axis=0)
|
81 |
-
|
82 |
-
new_row = pd.DataFrame({'hf_username': hf_username, 'pass_percentage': pass_percentage, 'datetime': submission_time}, index=[0])
|
83 |
-
history = pd.concat([new_row, history[:]]).reset_index(drop=True)
|
84 |
-
|
85 |
-
history.to_csv(os.path.join(CERTIFIED_USERS_DIR, CERTIFIED_USERS_FILENAME), index=False)
|
86 |
-
repo.push_to_hub(commit_message="Update certified users list")
|
87 |
|
88 |
def push_results_to_hub(user_answers, token: gr.OAuthToken | None):
|
89 |
"""
|
@@ -103,33 +77,28 @@ def push_results_to_hub(user_answers, token: gr.OAuthToken | None):
|
|
103 |
gr.Warning(
|
104 |
f"Score {grade:.1%} below passing threshold of {float(EXAM_PASSING_SCORE):.1%}"
|
105 |
)
|
106 |
-
return
|
107 |
|
108 |
gr.Info("Submitting answers to the Hub. Please wait...", duration=2)
|
109 |
|
110 |
user_info = whoami(token=token.token)
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
121 |
)
|
122 |
-
new_ds.push_to_hub(repo_id=repo_id, split=user_info["name"])
|
123 |
-
|
124 |
-
# I'm adding a csv version
|
125 |
-
# The idea, if the user passed, we create a simple row in a csv
|
126 |
-
print("ADD CERTIFIED USER")
|
127 |
-
# Add this user to our database
|
128 |
-
add_certified_user(user_info["name"], grade, submission_time)
|
129 |
-
|
130 |
-
return f"Your responses have been submitted to the Hub! Final grade: {grade:.1%}"
|
131 |
-
|
132 |
|
|
|
|
|
|
|
133 |
|
134 |
|
135 |
def handle_quiz(question_idx, user_answers, selected_answer, is_start):
|
|
|
1 |
import os
|
|
|
2 |
import random
|
3 |
|
4 |
+
from huggingface_hub import HfApi, whoami
|
|
|
|
|
5 |
|
6 |
import gradio as gr
|
7 |
+
from datasets import load_dataset
|
8 |
+
|
9 |
+
from data_to_parquet import to_parquet
|
10 |
|
11 |
EXAM_DATASET_ID = os.getenv("EXAM_DATASET_ID") or "agents-course/unit_1_quiz"
|
12 |
EXAM_MAX_QUESTIONS = os.getenv("EXAM_MAX_QUESTIONS") or 10
|
|
|
14 |
|
15 |
ds = load_dataset(EXAM_DATASET_ID, split="train")
|
16 |
|
17 |
+
upload_api = HfApi(token=os.getenv("HF_TOKEN"))
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
# Convert dataset to a list of dicts and randomly sort
|
19 |
quiz_data = ds.to_pandas().to_dict("records")
|
20 |
random.shuffle(quiz_data)
|
|
|
58 |
None, # no token
|
59 |
]
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
def push_results_to_hub(user_answers, token: gr.OAuthToken | None):
|
63 |
"""
|
|
|
77 |
gr.Warning(
|
78 |
f"Score {grade:.1%} below passing threshold of {float(EXAM_PASSING_SCORE):.1%}"
|
79 |
)
|
80 |
+
return # do not continue
|
81 |
|
82 |
gr.Info("Submitting answers to the Hub. Please wait...", duration=2)
|
83 |
|
84 |
user_info = whoami(token=token.token)
|
85 |
+
# TODO:
|
86 |
+
# check if username already has "username.parquet" in the dataset and download that (or read values directly from dataset viewer if possible)
|
87 |
+
# instead of replacing the values check if the new score is better than the old one
|
88 |
+
to_parquet(
|
89 |
+
upload_api, # api
|
90 |
+
"agents-course/students-data", # repo_id
|
91 |
+
user_info["name"], # username
|
92 |
+
grade, # unit1 score
|
93 |
+
0.0, # unit2 score
|
94 |
+
0.0, # unit3 score
|
95 |
+
0.0, # unit4 score
|
96 |
+
0, # already certified or not
|
97 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
gr.Success(
|
100 |
+
f"Your responses have been submitted to the Hub! Final grade: {grade:.1%}"
|
101 |
+
)
|
102 |
|
103 |
|
104 |
def handle_quiz(question_idx, user_answers, selected_answer, is_start):
|
data_to_parquet.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pyarrow as pa
|
2 |
+
import pyarrow.parquet as pq
|
3 |
+
import json
|
4 |
+
import tempfile
|
5 |
+
|
6 |
+
|
7 |
+
# current schema (refer to https://huggingface.co/spaces/phxia/dataset-builder/blob/main/dataset_uploader.py#L153 for more info)
|
8 |
+
schema = {
|
9 |
+
"username": {"_type": "Value", "dtype": "string"},
|
10 |
+
"unit1": {"_type": "Value", "dtype": "float64"},
|
11 |
+
"unit2": {"_type": "Value", "dtype": "float64"},
|
12 |
+
"unit3": {"_type": "Value", "dtype": "float64"},
|
13 |
+
"unit4": {"_type": "Value", "dtype": "float64"},
|
14 |
+
"certified": {"_type": "Value", "dtype": "int64"},
|
15 |
+
}
|
16 |
+
|
17 |
+
|
18 |
+
def to_parquet(
|
19 |
+
api,
|
20 |
+
repo: str,
|
21 |
+
username: str = "",
|
22 |
+
unit1: float = 0.0,
|
23 |
+
unit2: float = 0.0,
|
24 |
+
unit3: float = 0.0,
|
25 |
+
unit4: float = 0.0,
|
26 |
+
certified: int = 0,
|
27 |
+
):
|
28 |
+
data = {
|
29 |
+
"username": username,
|
30 |
+
"unit1": unit1 * 100 if unit1 != 0 else 0.0,
|
31 |
+
"unit2": unit2 * 100 if unit2 != 0 else 0.0,
|
32 |
+
"unit3": unit3 * 100 if unit3 != 0 else 0.0,
|
33 |
+
"unit4": unit4 * 100 if unit4 != 0 else 0.0,
|
34 |
+
"certified": certified,
|
35 |
+
}
|
36 |
+
# Export data to Arrow format
|
37 |
+
table = pa.Table.from_pylist([data])
|
38 |
+
# Add metadata (used by datasets library)
|
39 |
+
table = table.replace_schema_metadata(
|
40 |
+
{"huggingface": json.dumps({"info": {"features": schema}})}
|
41 |
+
)
|
42 |
+
# Write to parquet file
|
43 |
+
archive_file = tempfile.NamedTemporaryFile(delete=False)
|
44 |
+
pq.write_table(table, archive_file.name)
|
45 |
+
archive_file.close()
|
46 |
+
|
47 |
+
api.upload_file(
|
48 |
+
repo_id=repo, # manually created repo
|
49 |
+
repo_type="dataset",
|
50 |
+
path_in_repo=f"{username}.parquet", # each user will have their own parquet
|
51 |
+
path_or_fileobj=archive_file.name,
|
52 |
+
)
|