update app.py
#166
by
NishaDeepthi
- opened
app.py
CHANGED
@@ -49,10 +49,8 @@ custom_role_conversions=None,
|
|
49 |
|
50 |
# Import tool from Hub
|
51 |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
|
52 |
-
|
53 |
with open("prompts.yaml", 'r') as stream:
|
54 |
prompt_templates = yaml.safe_load(stream)
|
55 |
-
|
56 |
agent = CodeAgent(
|
57 |
model=model,
|
58 |
tools=[final_answer], ## add your tools here (don't remove final answer)
|
@@ -64,6 +62,44 @@ agent = CodeAgent(
|
|
64 |
description=None,
|
65 |
prompt_templates=prompt_templates
|
66 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# Import tool from Hub
|
51 |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
|
|
|
52 |
with open("prompts.yaml", 'r') as stream:
|
53 |
prompt_templates = yaml.safe_load(stream)
|
|
|
54 |
agent = CodeAgent(
|
55 |
model=model,
|
56 |
tools=[final_answer], ## add your tools here (don't remove final answer)
|
|
|
62 |
description=None,
|
63 |
prompt_templates=prompt_templates
|
64 |
)
|
65 |
+
GradioUI(agent).launch()
|
66 |
+
|
67 |
+
|
68 |
+
training_args = TrainingArguments(
|
69 |
+
output_dir="./lora-finetuned",
|
70 |
+
per_device_train_batch_size=4,
|
71 |
+
gradient_accumulation_steps=4,
|
72 |
+
save_steps=500,
|
73 |
+
logging_dir="./logs",
|
74 |
+
num_train_epochs=3,
|
75 |
+
save_total_limit=2,
|
76 |
+
fp16=True
|
77 |
+
)
|
78 |
+
trainer = Trainer(
|
79 |
+
model=model,
|
80 |
+
args=training_args,
|
81 |
+
train_dataset=tokenized_datasets["train"],
|
82 |
+
)
|
83 |
+
trainer.train()
|
84 |
+
|
85 |
|
86 |
|
87 |
+
|
88 |
+
training_args = TrainingArguments(
|
89 |
+
output_dir="./lora-finetuned",
|
90 |
+
per_device_train_batch_size=4,
|
91 |
+
gradient_accumulation_steps=4,
|
92 |
+
save_steps=500,
|
93 |
+
logging_dir="./logs",
|
94 |
+
num_train_epochs=3,
|
95 |
+
save_total_limit=2,
|
96 |
+
fp16=True
|
97 |
+
)
|
98 |
+
|
99 |
+
trainer=Trainer(
|
100 |
+
model=model,
|
101 |
+
args=training_args,
|
102 |
+
train_dataset=tokenized_datasets["train"],
|
103 |
+
)
|
104 |
+
trainer.train()
|
105 |
+
|