|
from fastapi import FastAPI, UploadFile, File |
|
import uvicorn |
|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torchvision.transforms as T |
|
from PIL import Image |
|
import io |
|
|
|
app = FastAPI() |
|
|
|
|
|
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small") |
|
midas.eval() |
|
transform = T.Compose([T.Resize((256, 256)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) |
|
|
|
@app.post("/upload/") |
|
async def upload_image(file: UploadFile = File(...)): |
|
image_bytes = await file.read() |
|
image = Image.open(io.BytesIO(image_bytes)).convert("RGB") |
|
|
|
|
|
img_tensor = transform(image).unsqueeze(0) |
|
with torch.no_grad(): |
|
depth_map = midas(img_tensor).squeeze().cpu().numpy() |
|
|
|
|
|
depth_map = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8) |
|
depth_img = cv2.applyColorMap(depth_map, cv2.COLORMAP_JET) |
|
|
|
_, buffer = cv2.imencode(".jpg", depth_img) |
|
return {"depth_map": buffer.tobytes()} |
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|