midas / app.py
adpro's picture
Create app.py
02cc722 verified
raw
history blame
1.11 kB
from fastapi import FastAPI, UploadFile, File
import uvicorn
import cv2
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
import io
app = FastAPI()
# Load AI model MiDaS
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small")
midas.eval()
transform = T.Compose([T.Resize((256, 256)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
@app.post("/upload/")
async def upload_image(file: UploadFile = File(...)):
image_bytes = await file.read()
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
# Convert to tensor & run AI model
img_tensor = transform(image).unsqueeze(0)
with torch.no_grad():
depth_map = midas(img_tensor).squeeze().cpu().numpy()
# Normalize depth map
depth_map = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
depth_img = cv2.applyColorMap(depth_map, cv2.COLORMAP_JET)
_, buffer = cv2.imencode(".jpg", depth_img)
return {"depth_map": buffer.tobytes()}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)