Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File
|
2 |
+
import uvicorn
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torchvision.transforms as T
|
7 |
+
from PIL import Image
|
8 |
+
import io
|
9 |
+
|
10 |
+
app = FastAPI()
|
11 |
+
|
12 |
+
# Load AI model MiDaS
|
13 |
+
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small")
|
14 |
+
midas.eval()
|
15 |
+
transform = T.Compose([T.Resize((256, 256)), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
|
16 |
+
|
17 |
+
@app.post("/upload/")
|
18 |
+
async def upload_image(file: UploadFile = File(...)):
|
19 |
+
image_bytes = await file.read()
|
20 |
+
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
21 |
+
|
22 |
+
# Convert to tensor & run AI model
|
23 |
+
img_tensor = transform(image).unsqueeze(0)
|
24 |
+
with torch.no_grad():
|
25 |
+
depth_map = midas(img_tensor).squeeze().cpu().numpy()
|
26 |
+
|
27 |
+
# Normalize depth map
|
28 |
+
depth_map = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
|
29 |
+
depth_img = cv2.applyColorMap(depth_map, cv2.COLORMAP_JET)
|
30 |
+
|
31 |
+
_, buffer = cv2.imencode(".jpg", depth_img)
|
32 |
+
return {"depth_map": buffer.tobytes()}
|
33 |
+
|
34 |
+
if __name__ == "__main__":
|
35 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|