File size: 2,566 Bytes
b3652fb
cd88622
02cc722
81def50
 
c74ea71
81def50
02cc722
bef39ed
81def50
02cc722
 
c74ea71
81def50
c74ea71
 
 
cd88622
b3652fb
 
81def50
b3652fb
81def50
c74ea71
 
 
81def50
cd88622
 
c74ea71
 
2d5e944
c74ea71
81def50
c74ea71
 
 
 
 
 
 
 
3412511
c74ea71
 
cd88622
 
 
903cef3
cd88622
 
b3652fb
 
 
 
81def50
 
 
 
b3652fb
81def50
 
 
 
 
b3652fb
81def50
b3652fb
81def50
f6e7520
81def50
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import io
import time
import numpy as np
import cv2
import torch
from transformers import AutoImageProcessor, ZoeDepthForDepthEstimation
from fastapi import FastAPI, File, UploadFile
from PIL import Image
import uvicorn

app = FastAPI()

# 🟢 Tải mô hình ZoeDepth từ Hugging Face
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
image_processor = AutoImageProcessor.from_pretrained("Intel/zoedepth-nyu-kitti")
model = ZoeDepthForDepthEstimation.from_pretrained("Intel/zoedepth-nyu-kitti").to(device)
model.eval()

@app.post("/analyze_path/")
async def analyze_path(file: UploadFile = File(...)):
    # 🟢 Đọc file ảnh từ ESP32
    image_bytes = await file.read()
    image = Image.open(io.BytesIO(image_bytes)).convert("RGB")

    # 🟢 Chuẩn bị ảnh cho mô hình ZoeDepth
    inputs = image_processor(images=image, return_tensors="pt").to(device)

    # 🟢 Bắt đầu đo thời gian dự đoán Depth Map
    start_time = time.time()

    # 🟢 Dự đoán Depth Map với ZoeDepth
    with torch.no_grad():
        outputs = model(**inputs)

    # 🟢 Xử lý ảnh sau khi dự đoán
    post_processed_output = image_processor.post_process_depth_estimation(
        outputs,
        source_sizes=[(image.height, image.width)],
    )
    predicted_depth = post_processed_output[0]["predicted_depth"]
    depth_map = predicted_depth * 255 / predicted_depth.max()
    depth_map = depth_map.detach().cpu().numpy().astype("uint8")

    end_time = time.time()
    print(f"⏳ ZoeDepth xử lý trong {end_time - start_time:.4f} giây")

    # 🟢 Đo thời gian xử lý đường đi
    start_detect_time = time.time()
    command = detect_path(depth_map)
    end_detect_time = time.time()
    print(f"⏳ detect_path() xử lý trong {end_detect_time - start_detect_time:.4f} giây")

    return {"command": command}

def detect_path(depth_map):
    """Phân tích đường đi từ ảnh Depth Map"""
    h, w = depth_map.shape
    center_x = w // 2
    scan_y = h - 20  # Quét dòng gần đáy ảnh

    left_region = np.mean(depth_map[scan_y, :center_x])
    right_region = np.mean(depth_map[scan_y, center_x:])
    center_region = np.mean(depth_map[scan_y, center_x - 20:center_x + 20])

    if center_region > 200:
        return "forward"
    elif left_region > right_region:
        return "left"
    elif right_region > left_region:
        return "right"
    else:
        return "backward"

# 🟢 Chạy server FastAPI
if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)