File size: 2,683 Bytes
8d36ed5 81def50 a310278 8d36ed5 02cc722 8d36ed5 81def50 8d36ed5 81def50 b3652fb 8d36ed5 0848216 8d36ed5 b3652fb 8d36ed5 b3652fb 8d36ed5 81def50 8d36ed5 81def50 8d36ed5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import io
import time
import numpy as np
import cv2
import torch
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
from fastapi import FastAPI, File, UploadFile
from PIL import Image
import uvicorn
app = FastAPI()
# 🟢 Chọn thiết bị xử lý (GPU nếu có)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 🟢 Tải model DPT-Hybrid thay cho ZoeDepth để tăng tốc
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(device)
model.eval()
@app.post("/analyze_path/")
async def analyze_path(file: UploadFile = File(...)):
# 🟢 Đọc file ảnh từ ESP32
image_bytes = await file.read()
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
# 🔵 Resize ảnh để xử lý nhanh hơn
image = image.resize((384, 384)) # Giảm kích thước giúp tăng tốc độ xử lý
# 🟢 Chuẩn bị ảnh cho mô hình
inputs = feature_extractor(images=image, return_tensors="pt").to(device)
# 🟢 Bắt đầu đo thời gian dự đoán Depth Map
start_time = time.time()
# 🟢 Dự đoán Depth Map với DPT-Hybrid
with torch.no_grad():
outputs = model(**inputs)
# 🟢 Xử lý ảnh sau khi dự đoán
predicted_depth = outputs.predicted_depth.squeeze().cpu().numpy()
depth_map = (predicted_depth * 255 / predicted_depth.max()).astype("uint8")
end_time = time.time()
print(f"⏳ DPT xử lý trong {end_time - start_time:.4f} giây")
# 🟢 Đo thời gian xử lý đường đi
start_detect_time = time.time()
command = detect_path(depth_map)
end_detect_time = time.time()
print(f"⏳ detect_path() xử lý trong {end_detect_time - start_detect_time:.4f} giây")
return {"command": command}
def detect_path(depth_map):
"""Phân tích đường đi từ ảnh Depth Map"""
h, w = depth_map.shape
center_x = w // 2
scan_y = int(h * 0.8) # Quét dòng 80% từ trên xuống
left_region = np.mean(depth_map[scan_y, :center_x])
right_region = np.mean(depth_map[scan_y, center_x:])
center_region = np.mean(depth_map[scan_y, center_x - 40:center_x + 40])
# 🟢 Cải thiện logic xử lý
threshold = 100 # Ngưỡng phân biệt vật cản
if center_region > threshold:
return "forward"
elif left_region > right_region:
return "left"
elif right_region > left_region:
return "right"
else:
return "backward"
# 🟢 Chạy server FastAPI
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)
|