|
import os |
|
import requests |
|
import streamlit as st |
|
|
|
|
|
API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2-xl" |
|
API_TOKEN = os.environ.get('HUGGINGFACEHUB_API_TOKEN') |
|
HEADERS = {"Authorization": f"Bearer {API_TOKEN}"} |
|
|
|
|
|
st.title("GPT-2 Movie Sentiment Analysis") |
|
|
|
|
|
input_text = st.text_area("Enter movie review:", "") |
|
|
|
|
|
analysis_type = st.radio("Select analysis type:", ["Zero-shot", "One-shot", "Few-shot"]) |
|
|
|
if st.button("Analyze Sentiment"): |
|
|
|
if analysis_type == "Zero-shot": |
|
payload = {"inputs": f"Label the text as either 'positive', 'negative', or 'mixed' related to a movie:\n\n{input_text}"} |
|
elif analysis_type == "One-shot": |
|
prompt = "Label the sentence as either 'positive', 'negative', or 'mixed' related to a movie:\n\n" \ |
|
"Sentence: This movie exceeded my expectations.\nLabel: positive" |
|
payload = {"inputs": f"{prompt} {input_text}"} |
|
elif analysis_type == "Few-shot": |
|
examples = [ |
|
"Sentence: The cinematography in this movie is outstanding.\nLabel: positive", |
|
"Sentence: I didn't enjoy the plot twists in the movie.\nLabel: negative", |
|
"Sentence: The acting was great, but the pacing felt off.\nLabel: mixed", |
|
"Sentence: This movie didn't live up to the hype.\nLabel: negative", |
|
] |
|
prompt = "Label the sentences as either 'positive', 'negative', or 'mixed' related to a movie:\n\n" + "\n".join(examples) |
|
payload = {"inputs": f"{prompt}\n\n{input_text}"} |
|
|
|
|
|
response = requests.post(API_URL, headers=HEADERS, json=payload) |
|
|
|
|
|
st.write("API Response:", response.json()) |
|
|
|
|
|
if response.status_code == 200: |
|
result = response.json()[0] |
|
st.write("Sentiment:", result.get('generated_text', 'N/A')) |
|
else: |
|
st.write("Error:", response.status_code, response.text) |
|
|