Update app.py
Browse files
app.py
CHANGED
|
@@ -1,103 +1,48 @@
|
|
| 1 |
-
# Imports
|
| 2 |
import os
|
| 3 |
-
import streamlit as st
|
| 4 |
import requests
|
| 5 |
-
|
| 6 |
-
import openai
|
| 7 |
-
|
| 8 |
-
# Suppressing all warnings
|
| 9 |
-
import warnings
|
| 10 |
-
warnings.filterwarnings("ignore")
|
| 11 |
-
|
| 12 |
-
# Image-to-text
|
| 13 |
-
def img2txt(url):
|
| 14 |
-
print("Initializing captioning model...")
|
| 15 |
-
captioning_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
|
| 16 |
-
|
| 17 |
-
print("Generating text from the image...")
|
| 18 |
-
text = captioning_model(url, max_new_tokens=20)[0]["generated_text"]
|
| 19 |
-
|
| 20 |
-
print(text)
|
| 21 |
-
return text
|
| 22 |
-
|
| 23 |
-
# Text-to-story
|
| 24 |
-
def txt2story(img_text):
|
| 25 |
-
print("Initializing client...")
|
| 26 |
-
client = openai.OpenAI(
|
| 27 |
-
api_key=os.environ["TOGETHER_API_KEY"],
|
| 28 |
-
base_url='https://api.together.xyz',
|
| 29 |
-
)
|
| 30 |
-
|
| 31 |
-
messages = [
|
| 32 |
-
{"role": "system", "content": '''As an experienced short story writer, write story title and then create a meaningful story influenced by provided words.
|
| 33 |
-
Ensure stories conclude positively within 100 words. Remember the story must end within 100 words''', "temperature": 1.8},
|
| 34 |
-
{"role": "user", "content": f"Here is input set of words: {img_text}", "temperature": 1.5},
|
| 35 |
-
]
|
| 36 |
-
|
| 37 |
-
print("Story...")
|
| 38 |
-
chat_completion = client.chat.completions.create(
|
| 39 |
-
messages=messages,
|
| 40 |
-
model="togethercomputer/llama-2-70b-chat")
|
| 41 |
-
|
| 42 |
-
print(chat_completion.choices[0].message.content)
|
| 43 |
-
return chat_completion.choices[0].message.content
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
# Text-to-speech
|
| 48 |
-
def txt2speech(text):
|
| 49 |
-
print("Initializing text-to-speech conversion...")
|
| 50 |
-
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
|
| 51 |
-
headers = {"Authorization": f"Bearer {os.environ['HUGGINGFACEHUB_API_TOKEN']}"}
|
| 52 |
-
payloads = {'inputs': text}
|
| 53 |
-
|
| 54 |
-
response = requests.post(API_URL, headers=headers, json=payloads)
|
| 55 |
-
|
| 56 |
-
with open('audio_story.mp3', 'wb') as file:
|
| 57 |
-
file.write(response.content)
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
# Streamlit web app main function
|
| 61 |
-
def main():
|
| 62 |
-
st.set_page_config(page_title="🎨 Image-to-Audio Story 🎧", page_icon="🖼️")
|
| 63 |
-
st.title("Turn the Image into Audio Story")
|
| 64 |
-
|
| 65 |
-
# Allows users to upload an image file
|
| 66 |
-
uploaded_file = st.file_uploader("# 📷 Upload an image...", type=["jpg", "jpeg", "png"])
|
| 67 |
-
|
| 68 |
-
if uploaded_file is not None:
|
| 69 |
-
# Reads and saves uploaded image file
|
| 70 |
-
bytes_data = uploaded_file.read()
|
| 71 |
-
with open("uploaded_image.jpg", "wb") as file:
|
| 72 |
-
file.write(bytes_data)
|
| 73 |
-
|
| 74 |
-
st.image(uploaded_file, caption='🖼️ Uploaded Image', use_column_width=True)
|
| 75 |
-
|
| 76 |
-
# Initiates AI processing and story generation
|
| 77 |
-
with st.spinner("## 🤖 AI is at Work! "):
|
| 78 |
-
scenario = img2txt("uploaded_image.jpg") # Extracts text from the image
|
| 79 |
-
story = txt2story(scenario) # Generates a story based on the image text
|
| 80 |
-
txt2speech(story) # Converts the story to audio
|
| 81 |
-
|
| 82 |
-
st.markdown("---")
|
| 83 |
-
st.markdown("## 📜 Image Caption")
|
| 84 |
-
st.write(scenario)
|
| 85 |
-
|
| 86 |
-
st.markdown("---")
|
| 87 |
-
st.markdown("## 📖 Story")
|
| 88 |
-
st.write(story)
|
| 89 |
-
|
| 90 |
-
st.markdown("---")
|
| 91 |
-
st.markdown("## 🎧 Audio Story")
|
| 92 |
-
st.audio("audio_story.mp3")
|
| 93 |
-
|
| 94 |
-
if __name__ == '__main__':
|
| 95 |
-
main()
|
| 96 |
|
| 97 |
-
#
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import requests
|
| 3 |
+
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
# API details
|
| 6 |
+
API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2-xl"
|
| 7 |
+
API_TOKEN = os.environ.get('HUGGINGFACEHUB_API_TOKEN')
|
| 8 |
+
HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}
|
| 9 |
+
|
| 10 |
+
# Streamlit UI
|
| 11 |
+
st.title("GPT-2 Movie Sentiment Analysis")
|
| 12 |
+
|
| 13 |
+
# Input text for sentiment analysis
|
| 14 |
+
input_text = st.text_area("Enter movie review:", "")
|
| 15 |
+
|
| 16 |
+
# Choose analysis type
|
| 17 |
+
analysis_type = st.radio("Select analysis type:", ["Zero-shot", "One-shot", "Few-shot"])
|
| 18 |
+
|
| 19 |
+
if st.button("Analyze Sentiment"):
|
| 20 |
+
# Prepare payload for API request
|
| 21 |
+
if analysis_type == "Zero-shot":
|
| 22 |
+
payload = {"inputs": f"Label the text as either 'positive', 'negative', or 'mixed' related to a movie:\n\n{input_text}"}
|
| 23 |
+
elif analysis_type == "One-shot":
|
| 24 |
+
prompt = "Label the sentence as either 'positive', 'negative', or 'mixed' related to a movie:\n\n" \
|
| 25 |
+
"Sentence: This movie exceeded my expectations.\nLabel: positive"
|
| 26 |
+
payload = {"inputs": f"{prompt} {input_text}"}
|
| 27 |
+
elif analysis_type == "Few-shot":
|
| 28 |
+
examples = [
|
| 29 |
+
"Sentence: The cinematography in this movie is outstanding.\nLabel: positive",
|
| 30 |
+
"Sentence: I didn't enjoy the plot twists in the movie.\nLabel: negative",
|
| 31 |
+
"Sentence: The acting was great, but the pacing felt off.\nLabel: mixed",
|
| 32 |
+
"Sentence: This movie didn't live up to the hype.\nLabel: negative",
|
| 33 |
+
]
|
| 34 |
+
prompt = "Label the sentences as either 'positive', 'negative', or 'mixed' related to a movie:\n\n" + "\n".join(examples)
|
| 35 |
+
payload = {"inputs": f"{prompt}\n\n{input_text}"}
|
| 36 |
+
|
| 37 |
+
# Make API request
|
| 38 |
+
response = requests.post(API_URL, headers=HEADERS, json=payload)
|
| 39 |
+
|
| 40 |
+
# Print entire response for debugging
|
| 41 |
+
st.write("API Response:", response.json())
|
| 42 |
+
|
| 43 |
+
# Display results
|
| 44 |
+
if response.status_code == 200:
|
| 45 |
+
result = response.json()[0] # Assuming the sentiment is in the first item of the list
|
| 46 |
+
st.write("Sentiment:", result.get('generated_text', 'N/A'))
|
| 47 |
+
else:
|
| 48 |
+
st.write("Error:", response.status_code, response.text)
|