File size: 3,521 Bytes
e7bd9fb
e15f81c
3e74eb0
e7bd9fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e15f81c
e7bd9fb
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Imports
import os
import streamlit as st
import requests
from transformers import pipeline
import openai

# Suppressing all warnings
import warnings
warnings.filterwarnings("ignore")

# Image-to-text
def img2txt(url):
    print("Initializing captioning model...")
    captioning_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
    
    print("Generating text from the image...")
    text = captioning_model(url, max_new_tokens=20)[0]["generated_text"]
    
    print(text)
    return text

# Text-to-story
def txt2story(img_text):
    print("Initializing client...")
    client = openai.OpenAI(
        api_key=os.environ["TOGETHER_API_KEY"], 
        base_url='https://api.together.xyz',
    )
    
    messages = [
        {"role": "system", "content": '''As an experienced short story writer, write story title and then create a meaningful story influenced by provided words. 
        Ensure stories conclude positively within 100 words. Remember the story must end within 100 words''', "temperature": 1.8},
        {"role": "user", "content": f"Here is input set of words: {img_text}", "temperature": 1.5},
    ]
    
    print("Story...")
    chat_completion = client.chat.completions.create(
        messages=messages,
        model="togethercomputer/llama-2-70b-chat")
    
    print(chat_completion.choices[0].message.content)
    return chat_completion.choices[0].message.content



# Text-to-speech
def txt2speech(text):
    print("Initializing text-to-speech conversion...")
    API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
    headers = {"Authorization": f"Bearer {os.environ['HUGGINGFACEHUB_API_TOKEN']}"}
    payloads = {'inputs': text}

    response = requests.post(API_URL, headers=headers, json=payloads)
    
    with open('audio_story.mp3', 'wb') as file:
        file.write(response.content)

        
# Streamlit web app main function
def main():
    st.set_page_config(page_title="🎨 Image-to-Audio Story 🎧", page_icon="πŸ–ΌοΈ")
    st.title("Turn the Image into Audio Story")

# Allows users to upload an image file
    uploaded_file = st.file_uploader("# πŸ“· Upload an image...", type=["jpg", "jpeg", "png"])

    if uploaded_file is not None:
# Reads and saves uploaded image file
        bytes_data = uploaded_file.read()
        with open("uploaded_image.jpg", "wb") as file:
            file.write(bytes_data)

        st.image(uploaded_file, caption='πŸ–ΌοΈ Uploaded Image', use_column_width=True)

 # Initiates AI processing and story generation
        with st.spinner("## πŸ€– AI is at Work! "):
            scenario = img2txt("uploaded_image.jpg")  # Extracts text from the image
            story = txt2story(scenario)  # Generates a story based on the image text
            txt2speech(story)  # Converts the story to audio

            st.markdown("---")
            st.markdown("## πŸ“œ Image Caption")
            st.write(scenario)

            st.markdown("---")
            st.markdown("## πŸ“– Story")
            st.write(story)

            st.markdown("---")
            st.markdown("## 🎧 Audio Story")
            st.audio("audio_story.mp3")
             
if __name__ == '__main__':
    main()

# Credits
st.markdown("### Credits")
st.caption('''
            Made with ❀️ by @Aditya-Neural-Net-Ninja\n 
            Utilizes Image-to-text, Text Generation, Text-to-speech Transformer Models\n
            Gratitude to Streamlit, πŸ€— Spaces for Deployment & Hosting
            ''')