File size: 5,847 Bytes
e15f81c 3e74eb0 e7bd9fb ad83944 e7bd9fb ad83944 e7bd9fb ad83944 a4bb483 ad83944 e7bd9fb ad83944 e7bd9fb a4bb483 e7bd9fb ad83944 e7bd9fb ad83944 e7bd9fb ad83944 e7bd9fb f9fdb45 e7bd9fb f9fdb45 33ee975 6250287 33ee975 ad83944 e7bd9fb f9fdb45 e7bd9fb f9fdb45 e7bd9fb ad83944 e7bd9fb f9fdb45 e7bd9fb e15f81c e7bd9fb f0dbb23 e7bd9fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import os
import streamlit as st
import requests
from transformers import pipeline
from together import Together
from typing import Dict
# Image-to-text
def img2txt(url: str) -> str:
print("Initializing captioning model...")
captioning_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
print("Generating text from the image...")
text = captioning_model(url, max_new_tokens=20)[0]["generated_text"]
print(text)
return text
# Text-to-story
def txt2story(prompt: str, top_k: int, top_p: float, temperature: float) -> str:
client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
stream = client.chat.completions.create(
model="meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
messages=[
{"role": "system", "content": '''As an experienced short story writer, write a story title and then create a meaningful story influenced by the provided prompt.
Ensure the story is full of positive inspiration & enthusiasm and concludes with a happy ending within 250 words. Remember the story must end within 100 words'''},
{"role": "user", "content": prompt}
],
top_k=top_k,
top_p=top_p,
temperature=temperature,
stream=True
)
story = ''
for chunk in stream:
story += chunk.choices[0].delta.content
return story
# Text-to-speech
def txt2speech(text: str) -> None:
print("Initializing text-to-speech conversion...")
API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
headers = {"Authorization": f"Bearer {os.environ['HUGGINGFACEHUB_API_TOKEN']}"}
payloads = {'inputs': text}
response = requests.post(API_URL, headers=headers, json=payloads)
with open('audio_story.mp3', 'wb') as file:
file.write(response.content)
def get_user_preferences() -> Dict[str, str]:
preferences = {}
preferences['genre'] = st.selectbox("Genre", ["Science Fiction", "Fantasy", "Mystery", "Romance"])
preferences['setting'] = st.selectbox("Setting", ["Future", "Medieval times", "Modern day", "Alternate reality"])
preferences['plot'] = st.selectbox("Plot", ["Hero's journey", "Solving a mystery", "Love story", "Survival"])
preferences['tone'] = st.selectbox("Tone", ["Serious", "Light-hearted", "Humorous", "Dark"])
preferences['theme'] = st.selectbox("Theme", ["Self-discovery", "Redemption", "Love", "Justice"])
preferences['conflict'] = st.selectbox("Conflict Type", ["Person vs. Society", "Internal struggle", "Person vs. Nature", "Person vs. Person"])
preferences['magic_tech'] = st.selectbox("Magic/Technology", ["Advanced technology", "Magic system", "Supernatural abilities", "Alien technology"])
preferences['twist'] = st.selectbox("Mystery/Twist", ["Plot twist", "Hidden identity", "Unexpected ally/enemy", "Time paradox"])
preferences['ending'] = st.selectbox("Ending", ["Bittersweet", "Happy", "Open-ended", "Tragic"])
return preferences
def main():
st.set_page_config(page_title="π¨ Image-to-Audio Story π§", page_icon="πΌοΈ")
st.title("Turn the Image into Audio Story")
# Allows users to upload an image file
uploaded_file = st.file_uploader("# π· Upload an image...", type=["jpg", "jpeg", "png"])
# Parameters for LLM model (in the sidebar)
st.sidebar.markdown("# LLM Inference Configuration Parameters")
top_k = st.sidebar.number_input("Top-K", min_value=1, max_value=100, value=5)
top_p = st.sidebar.number_input("Top-P", min_value=0.0, max_value=1.0, value=0.8)
temperature = st.sidebar.number_input("Temperature", min_value=0.1, max_value=2.0, value=1.5)
# Get user preferences for the story
st.markdown("## Story Preferences")
preferences = get_user_preferences()
if uploaded_file is not None:
# Reads and saves uploaded image file
bytes_data = uploaded_file.read()
with open("uploaded_image.jpg", "wb") as file:
file.write(bytes_data)
st.image(uploaded_file, caption='πΌοΈ Uploaded Image', use_column_width=True)
# Initiates AI processing and story generation
with st.spinner("## π€ AI is at Work! "):
scenario = img2txt("uploaded_image.jpg") # Extracts text from the image
# Modify the prompt to include user preferences
prompt = f"Based on the image description: '{scenario}', create a {preferences['genre']} story set in {preferences['setting']}. " \
f"The story should have a {preferences['tone']} tone and explore the theme of {preferences['theme']}. " \
f"The main conflict should be {preferences['conflict']}. " \
f"Include {preferences['magic_tech']} as a key element. " \
f"The story should have a {preferences['twist']} and end with a {preferences['ending']} ending."
story = txt2story(prompt, top_k, top_p, temperature) # Generates a story based on the image text, LLM params, and user preferences
txt2speech(story) # Converts the story to audio
st.markdown("---")
st.markdown("## π Image Caption")
st.write(scenario)
st.markdown("---")
st.markdown("## π Story")
st.write(story)
st.markdown("---")
st.markdown("## π§ Audio Story")
st.audio("audio_story.mp3")
if __name__ == '__main__':
main()
# Credits
st.markdown("### Credits")
st.caption('''
Made with β€οΈ by @Aditya-Neural-Net-Ninja\n
Utilizes Image-to-Text, Text Generation, Text-to-Speech Transformer Models\n
Gratitude to Streamlit, π€ Spaces for Deployment & Hosting
''') |