File size: 5,847 Bytes
e15f81c
3e74eb0
e7bd9fb
 
ad83944
 
e7bd9fb
 
ad83944
e7bd9fb
 
 
 
 
 
 
 
 
 
ad83944
 
 
 
 
 
 
 
a4bb483
ad83944
 
 
 
 
e7bd9fb
ad83944
 
 
e7bd9fb
a4bb483
e7bd9fb
 
ad83944
e7bd9fb
 
 
 
ad83944
e7bd9fb
 
 
 
 
ad83944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7bd9fb
 
 
 
f9fdb45
e7bd9fb
 
f9fdb45
 
33ee975
6250287
 
33ee975
ad83944
 
 
 
e7bd9fb
f9fdb45
e7bd9fb
 
 
 
 
 
f9fdb45
e7bd9fb
 
ad83944
 
 
 
 
 
 
 
 
e7bd9fb
 
 
 
 
 
 
 
 
 
 
 
 
f9fdb45
e7bd9fb
 
e15f81c
e7bd9fb
 
 
 
f0dbb23
e7bd9fb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import streamlit as st
import requests
from transformers import pipeline
from together import Together
from typing import Dict

# Image-to-text
def img2txt(url: str) -> str:
    print("Initializing captioning model...")
    captioning_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
    
    print("Generating text from the image...")
    text = captioning_model(url, max_new_tokens=20)[0]["generated_text"]
    
    print(text)
    return text

# Text-to-story
def txt2story(prompt: str, top_k: int, top_p: float, temperature: float) -> str:
    client = Together(api_key=os.environ.get("TOGETHER_API_KEY"))
    stream = client.chat.completions.create(
        model="meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
        messages=[
            {"role": "system", "content": '''As an experienced short story writer, write a story title and then create a meaningful story influenced by the provided prompt.
            Ensure the story is full of positive inspiration & enthusiasm and concludes with a happy ending within 250 words. Remember the story must end within 100 words'''},
            {"role": "user", "content": prompt}
        ],
        top_k=top_k,
        top_p=top_p,
        temperature=temperature,
        stream=True
    )
    
    story = ''
    for chunk in stream:
        story += chunk.choices[0].delta.content
    
    return story

# Text-to-speech
def txt2speech(text: str) -> None:
    print("Initializing text-to-speech conversion...")
    API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits"
    headers = {"Authorization": f"Bearer {os.environ['HUGGINGFACEHUB_API_TOKEN']}"}
    payloads = {'inputs': text}
    
    response = requests.post(API_URL, headers=headers, json=payloads)
    
    with open('audio_story.mp3', 'wb') as file:
        file.write(response.content)

def get_user_preferences() -> Dict[str, str]:
    preferences = {}
    
    preferences['genre'] = st.selectbox("Genre", ["Science Fiction", "Fantasy", "Mystery", "Romance"])
    preferences['setting'] = st.selectbox("Setting", ["Future", "Medieval times", "Modern day", "Alternate reality"])
    preferences['plot'] = st.selectbox("Plot", ["Hero's journey", "Solving a mystery", "Love story", "Survival"])
    preferences['tone'] = st.selectbox("Tone", ["Serious", "Light-hearted", "Humorous", "Dark"])
    preferences['theme'] = st.selectbox("Theme", ["Self-discovery", "Redemption", "Love", "Justice"])
    preferences['conflict'] = st.selectbox("Conflict Type", ["Person vs. Society", "Internal struggle", "Person vs. Nature", "Person vs. Person"])
    preferences['magic_tech'] = st.selectbox("Magic/Technology", ["Advanced technology", "Magic system", "Supernatural abilities", "Alien technology"])
    preferences['twist'] = st.selectbox("Mystery/Twist", ["Plot twist", "Hidden identity", "Unexpected ally/enemy", "Time paradox"])
    preferences['ending'] = st.selectbox("Ending", ["Bittersweet", "Happy", "Open-ended", "Tragic"])
    
    return preferences

def main():
    st.set_page_config(page_title="🎨 Image-to-Audio Story 🎧", page_icon="πŸ–ΌοΈ")
    st.title("Turn the Image into Audio Story")

    # Allows users to upload an image file
    uploaded_file = st.file_uploader("# πŸ“· Upload an image...", type=["jpg", "jpeg", "png"])

    # Parameters for LLM model (in the sidebar)
    st.sidebar.markdown("# LLM Inference Configuration Parameters")
    top_k = st.sidebar.number_input("Top-K", min_value=1, max_value=100, value=5)
    top_p = st.sidebar.number_input("Top-P", min_value=0.0, max_value=1.0, value=0.8)
    temperature = st.sidebar.number_input("Temperature", min_value=0.1, max_value=2.0, value=1.5)

    # Get user preferences for the story
    st.markdown("## Story Preferences")
    preferences = get_user_preferences()

    if uploaded_file is not None:
        # Reads and saves uploaded image file
        bytes_data = uploaded_file.read()
        with open("uploaded_image.jpg", "wb") as file:
            file.write(bytes_data)

        st.image(uploaded_file, caption='πŸ–ΌοΈ Uploaded Image', use_column_width=True)

        # Initiates AI processing and story generation
        with st.spinner("## πŸ€– AI is at Work! "):
            scenario = img2txt("uploaded_image.jpg")  # Extracts text from the image
            
            # Modify the prompt to include user preferences
            prompt = f"Based on the image description: '{scenario}', create a {preferences['genre']} story set in {preferences['setting']}. " \
                     f"The story should have a {preferences['tone']} tone and explore the theme of {preferences['theme']}. " \
                     f"The main conflict should be {preferences['conflict']}. " \
                     f"Include {preferences['magic_tech']} as a key element. " \
                     f"The story should have a {preferences['twist']} and end with a {preferences['ending']} ending."
            
            story = txt2story(prompt, top_k, top_p, temperature)  # Generates a story based on the image text, LLM params, and user preferences
            txt2speech(story)  # Converts the story to audio

            st.markdown("---")
            st.markdown("## πŸ“œ Image Caption")
            st.write(scenario)

            st.markdown("---")
            st.markdown("## πŸ“– Story")
            st.write(story)

            st.markdown("---")
            st.markdown("## 🎧 Audio Story")
            st.audio("audio_story.mp3")

if __name__ == '__main__':
    main()

# Credits
st.markdown("### Credits")
st.caption('''
            Made with ❀️ by @Aditya-Neural-Net-Ninja\n 
            Utilizes Image-to-Text, Text Generation, Text-to-Speech Transformer Models\n
            Gratitude to Streamlit, πŸ€— Spaces for Deployment & Hosting
            ''')