A B Vijay Kumar
Update app.py
6a22981
raw
history blame
1.25 kB
import gradio as gr
#from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import pipeline
model_name = "vijjuk/codegen-350M-mono-python-18k-alpaca"
pipe = pipeline("python-fine-tuning", model=model_name)
#base_model = AutoModelForCausalLM.from_pretrained(model_name)
#tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
#tokenizer.pad_token = tokenizer.eos_token
#tokenizer.padding_side = "right"
def query(instruction, input):
prompt = f"""### Instruction:
Use the Task below and the Input given to write the Response, which is a programming code that can solve the Task.
### Task:
{instruction}
### Input:
{input}
### Response:
"""
#input_ids = tokenizer(prompt, return_tensors="pt", truncation=True)
#output_base = base_model.generate(input_ids=input_ids, max_new_tokens=500, do_sample=True, top_p=0.9,temperature=0.5)
#response = "{tokenizer.batch_decode(output_base.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]}"
#return response
return pipe(prompt)[0]["prompt"]
inputs = ["text", "text"]
outputs = "text"
iface = gr.Interface(fn=query, inputs=inputs, outputs=outputs)
iface.launch()