import gradio as gr #from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import pipeline model_name = "vijjuk/codegen-350M-mono-python-18k-alpaca" pipe = pipeline("python-fine-tuning", model=model_name) #base_model = AutoModelForCausalLM.from_pretrained(model_name) #tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) #tokenizer.pad_token = tokenizer.eos_token #tokenizer.padding_side = "right" def query(instruction, input): prompt = f"""### Instruction: Use the Task below and the Input given to write the Response, which is a programming code that can solve the Task. ### Task: {instruction} ### Input: {input} ### Response: """ #input_ids = tokenizer(prompt, return_tensors="pt", truncation=True) #output_base = base_model.generate(input_ids=input_ids, max_new_tokens=500, do_sample=True, top_p=0.9,temperature=0.5) #response = "{tokenizer.batch_decode(output_base.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]}" #return response return pipe(prompt)[0]["prompt"] inputs = ["text", "text"] outputs = "text" iface = gr.Interface(fn=query, inputs=inputs, outputs=outputs) iface.launch()