Spaces:
Sleeping
Sleeping
import os | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow.keras.models import load_model | |
from PIL import Image | |
import streamlit as st | |
from groq import Groq | |
# Set Groq API key in environment variable | |
os.environ['GROQ_API_KEY'] = "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" | |
GROQ_API_KEY = os.getenv('GROQ_API_KEY') | |
# Initialize Groq client | |
client = Groq(api_key=GROQ_API_KEY) | |
# Load the classification model (make sure the model is trained and saved) | |
classification_model = load_model('classification_model.h5') # Model for normal/abnormal classification | |
# Function to load the image and process it | |
def load_image(image_file): | |
img = Image.open(image_file) | |
img = img.resize((224, 224)) # Resize image to match model input | |
img_array = np.array(img) / 255.0 # Normalize the image | |
return np.expand_dims(img_array, axis=0) | |
# Function for AI-based knowledge generation using Groq API | |
def generate_ai_insights(organ_name): | |
chat_completion = client.chat.completions.create( | |
messages=[ | |
{ | |
"role": "user", | |
"content": f"Explain the diseases and treatments related to {organ_name}.", | |
} | |
], | |
model="llama-3.3-70b-versatile", | |
) | |
return chat_completion.choices[0].message.content | |
# Streamlit UI | |
st.title('Medical Image Classification and Insights') | |
st.sidebar.title("Menu") | |
uploaded_image = st.sidebar.file_uploader("Upload X-ray or MRI Image", type=["jpg", "png", "jpeg"]) | |
if uploaded_image is not None: | |
image = load_image(uploaded_image) | |
# Classify normal or abnormal | |
prediction = classification_model.predict(image) | |
if prediction[0] > 0.5: | |
classification_result = "Normal" | |
else: | |
classification_result = "Abnormal" | |
st.image(uploaded_image, caption="Uploaded Image", use_column_width=True) | |
st.write(f"Image Classification: {classification_result}") | |
# Recognize the organ (You can expand the model to predict organ type) | |
organ_name = "Lung" # Placeholder | |
st.write(f"Recognized Organ: {organ_name}") | |
# Get AI insights for the recognized organ | |
ai_insights = generate_ai_insights(organ_name) | |
st.write("AI-Based Insights on Organ Diseases and Treatments:") | |
st.write(ai_insights) | |