import os import numpy as np import tensorflow as tf from tensorflow.keras.models import load_model from PIL import Image import streamlit as st from groq import Groq # Set Groq API key in environment variable os.environ['GROQ_API_KEY'] = "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" GROQ_API_KEY = os.getenv('GROQ_API_KEY') # Initialize Groq client client = Groq(api_key=GROQ_API_KEY) # Load the classification model (make sure the model is trained and saved) classification_model = load_model('classification_model.h5') # Model for normal/abnormal classification # Function to load the image and process it def load_image(image_file): img = Image.open(image_file) img = img.resize((224, 224)) # Resize image to match model input img_array = np.array(img) / 255.0 # Normalize the image return np.expand_dims(img_array, axis=0) # Function for AI-based knowledge generation using Groq API def generate_ai_insights(organ_name): chat_completion = client.chat.completions.create( messages=[ { "role": "user", "content": f"Explain the diseases and treatments related to {organ_name}.", } ], model="llama-3.3-70b-versatile", ) return chat_completion.choices[0].message.content # Streamlit UI st.title('Medical Image Classification and Insights') st.sidebar.title("Menu") uploaded_image = st.sidebar.file_uploader("Upload X-ray or MRI Image", type=["jpg", "png", "jpeg"]) if uploaded_image is not None: image = load_image(uploaded_image) # Classify normal or abnormal prediction = classification_model.predict(image) if prediction[0] > 0.5: classification_result = "Normal" else: classification_result = "Abnormal" st.image(uploaded_image, caption="Uploaded Image", use_column_width=True) st.write(f"Image Classification: {classification_result}") # Recognize the organ (You can expand the model to predict organ type) organ_name = "Lung" # Placeholder st.write(f"Recognized Organ: {organ_name}") # Get AI insights for the recognized organ ai_insights = generate_ai_insights(organ_name) st.write("AI-Based Insights on Organ Diseases and Treatments:") st.write(ai_insights)