Spaces:
Sleeping
Sleeping
| import os | |
| import streamlit as st | |
| from PIL import Image | |
| import torch | |
| from torchvision import transforms, models | |
| import numpy as np | |
| from groq import Groq | |
| # Set up environment variables | |
| os.environ["GROQ_API_KEY"] = "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" | |
| # Initialize Groq client | |
| client = Groq(api_key=os.environ.get("GROQ_API_KEY")) | |
| # Load Pretrained Models | |
| def load_model(): | |
| # Pretrained EfficientNet for organ recognition | |
| organ_model = models.efficientnet_b0(pretrained=True) | |
| organ_model.eval() | |
| # Pretrained DenseNet (CheXNet) for normal/abnormal classification | |
| chexnet_model = models.densenet121(pretrained=True) | |
| chexnet_model.classifier = torch.nn.Linear(1024, 2) # Normal, Abnormal | |
| chexnet_model.eval() | |
| return organ_model, chexnet_model | |
| organ_model, chexnet_model = load_model() | |
| # Image Preprocessing | |
| def preprocess_image(image): | |
| transform = transforms.Compose([ | |
| transforms.Resize((224, 224)), | |
| transforms.ToTensor(), | |
| transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
| ]) | |
| return transform(image).unsqueeze(0) | |
| # Groq API for AI Insights | |
| def get_ai_insights(text_prompt): | |
| try: | |
| response = client.chat.completions.create( | |
| messages=[{"role": "user", "content": text_prompt}], | |
| model="llama-3.3-70b-versatile" | |
| ) | |
| return response.choices[0].message.content | |
| except Exception as e: | |
| return f"Error: {e}" | |
| # Predict Organ | |
| def predict_organ(image): | |
| with torch.no_grad(): | |
| output = organ_model(preprocess_image(image)) | |
| classes = ["Lungs", "Heart", "Spine", "Other"] # Example classes | |
| prediction = classes[output.argmax().item()] | |
| return prediction | |
| # Predict Normal/Abnormal | |
| def predict_normal_abnormal(image): | |
| with torch.no_grad(): | |
| output = chexnet_model(preprocess_image(image)) | |
| classes = ["Normal", "Abnormal"] | |
| prediction = classes[output.argmax().item()] | |
| return prediction | |
| # Streamlit App | |
| st.title("Medical X-ray Analysis App") | |
| st.sidebar.title("Navigation") | |
| task = st.sidebar.radio("Select a task", ["Upload X-ray", "AI Insights"]) | |
| if task == "Upload X-ray": | |
| uploaded_file = st.file_uploader("Upload an X-ray image", type=["jpg", "png", "jpeg"]) | |
| if uploaded_file: | |
| image = Image.open(uploaded_file) | |
| st.image(image, caption="Uploaded X-ray", use_column_width=True) | |
| # Predict Organ | |
| st.subheader("Step 1: Identify the Organ") | |
| organ = predict_organ(image) | |
| st.write(f"Predicted Organ: **{organ}**") | |
| # Predict Normal/Abnormal | |
| st.subheader("Step 2: Analyze the X-ray") | |
| classification = predict_normal_abnormal(image) | |
| st.write(f"X-ray Status: **{classification}**") | |
| if classification == "Abnormal": | |
| st.subheader("Step 3: AI-Based Insights") | |
| ai_prompt = f"Explain why this X-ray of the {organ} is abnormal." | |
| insights = get_ai_insights(ai_prompt) | |
| st.write(insights) | |
| elif task == "AI Insights": | |
| st.subheader("Ask AI") | |
| user_input = st.text_area("Enter your query for AI insights") | |
| if user_input: | |
| response = get_ai_insights(user_input) | |
| st.write(response) | |