Spaces:
Sleeping
Sleeping
File size: 3,274 Bytes
8a359f9 4265985 8a359f9 4c0ed57 8a359f9 4c0ed57 8066bd0 4c0ed57 4265985 4c0ed57 4265985 4c0ed57 4265985 4c0ed57 4265985 4c0ed57 4265985 4c0ed57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import os
import streamlit as st
from PIL import Image
import torch
from torchvision import transforms, models
import numpy as np
from groq import Groq
# Set up environment variables
os.environ["GROQ_API_KEY"] = "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"
# Initialize Groq client
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
# Load Pretrained Models
@st.cache_resource
def load_model():
# Pretrained EfficientNet for organ recognition
organ_model = models.efficientnet_b0(pretrained=True)
organ_model.eval()
# Pretrained DenseNet (CheXNet) for normal/abnormal classification
chexnet_model = models.densenet121(pretrained=True)
chexnet_model.classifier = torch.nn.Linear(1024, 2) # Normal, Abnormal
chexnet_model.eval()
return organ_model, chexnet_model
organ_model, chexnet_model = load_model()
# Image Preprocessing
def preprocess_image(image):
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
return transform(image).unsqueeze(0)
# Groq API for AI Insights
def get_ai_insights(text_prompt):
try:
response = client.chat.completions.create(
messages=[{"role": "user", "content": text_prompt}],
model="llama-3.3-70b-versatile"
)
return response.choices[0].message.content
except Exception as e:
return f"Error: {e}"
# Predict Organ
def predict_organ(image):
with torch.no_grad():
output = organ_model(preprocess_image(image))
classes = ["Lungs", "Heart", "Spine", "Other"] # Example classes
prediction = classes[output.argmax().item()]
return prediction
# Predict Normal/Abnormal
def predict_normal_abnormal(image):
with torch.no_grad():
output = chexnet_model(preprocess_image(image))
classes = ["Normal", "Abnormal"]
prediction = classes[output.argmax().item()]
return prediction
# Streamlit App
st.title("Medical X-ray Analysis App")
st.sidebar.title("Navigation")
task = st.sidebar.radio("Select a task", ["Upload X-ray", "AI Insights"])
if task == "Upload X-ray":
uploaded_file = st.file_uploader("Upload an X-ray image", type=["jpg", "png", "jpeg"])
if uploaded_file:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded X-ray", use_column_width=True)
# Predict Organ
st.subheader("Step 1: Identify the Organ")
organ = predict_organ(image)
st.write(f"Predicted Organ: **{organ}**")
# Predict Normal/Abnormal
st.subheader("Step 2: Analyze the X-ray")
classification = predict_normal_abnormal(image)
st.write(f"X-ray Status: **{classification}**")
if classification == "Abnormal":
st.subheader("Step 3: AI-Based Insights")
ai_prompt = f"Explain why this X-ray of the {organ} is abnormal."
insights = get_ai_insights(ai_prompt)
st.write(insights)
elif task == "AI Insights":
st.subheader("Ask AI")
user_input = st.text_area("Enter your query for AI insights")
if user_input:
response = get_ai_insights(user_input)
st.write(response)
|