abuzarAli commited on
Commit
8a359f9
·
verified ·
1 Parent(s): 60156d2

Create App.py

Browse files
Files changed (1) hide show
  1. App.py +72 -0
App.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import streamlit as st
3
+ import tensorflow as tf
4
+ from tensorflow.keras.models import load_model
5
+ from tensorflow.keras.preprocessing.image import img_to_array, load_img
6
+ import numpy as np
7
+ import requests
8
+ from PIL import Image
9
+
10
+ # Set Groq API key in environment variable
11
+ os.environ['GROQ_API_KEY'] = "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"
12
+ GROQ_API_KEY = os.getenv('GROQ_API_KEY')
13
+
14
+ # Load pre-trained models (assumed to be in the same directory or provide the correct path)
15
+ classification_model = load_model('classification_model.h5') # Model for normal/abnormal classification
16
+ organ_recognition_model = load_model('organ_recognition_model.h5') # Model for organ recognition
17
+
18
+ def classify_image(image_path):
19
+ """Classify the image as normal or abnormal."""
20
+ image = load_img(image_path, target_size=(224, 224))
21
+ image_array = img_to_array(image) / 255.0
22
+ image_array = np.expand_dims(image_array, axis=0)
23
+ prediction = classification_model.predict(image_array)
24
+ return 'Abnormal' if prediction[0][0] > 0.5 else 'Normal'
25
+
26
+ def recognize_organ(image_path):
27
+ """Recognize the organ in the image."""
28
+ image = load_img(image_path, target_size=(224, 224))
29
+ image_array = img_to_array(image) / 255.0
30
+ image_array = np.expand_dims(image_array, axis=0)
31
+ prediction = organ_recognition_model.predict(image_array)
32
+ organ_classes = ['Lung', 'Heart', 'Brain'] # Example classes
33
+ return organ_classes[np.argmax(prediction)]
34
+
35
+ def get_ai_insights(organ):
36
+ """Fetch AI-based insights about the organ using Groq API."""
37
+ url = "https://api.groq.com/v1/insights"
38
+ headers = {"Authorization": f"Bearer {GROQ_API_KEY}", "Content-Type": "application/json"}
39
+ data = {"query": f"Provide detailed insights about {organ} X-ray, its diseases, and treatments."}
40
+ response = requests.post(url, headers=headers, json=data)
41
+ if response.status_code == 200:
42
+ return response.json().get("insights", "No insights available.")
43
+ else:
44
+ return "Failed to fetch insights. Please try again later."
45
+
46
+ def main():
47
+ st.title("Medical Image Classification App")
48
+ st.sidebar.title("Navigation")
49
+
50
+ uploaded_file = st.file_uploader("Upload an X-ray or MRI image", type=["jpg", "jpeg", "png"])
51
+
52
+ if uploaded_file:
53
+ image = Image.open(uploaded_file)
54
+ st.image(image, caption="Uploaded Image", use_column_width=True)
55
+
56
+ with open("temp_image.jpg", "wb") as f:
57
+ f.write(uploaded_file.getbuffer())
58
+
59
+ st.write("### Classification Result")
60
+ result = classify_image("temp_image.jpg")
61
+ st.write(f"The X-ray is classified as: **{result}**")
62
+
63
+ st.write("### Organ Recognition")
64
+ organ = recognize_organ("temp_image.jpg")
65
+ st.write(f"Recognized Organ: **{organ}**")
66
+
67
+ st.write("### AI-Based Insights")
68
+ insights = get_ai_insights(organ)
69
+ st.write(insights)
70
+
71
+ if __name__ == "__main__":
72
+ main()