|
from datasets import load_dataset |
|
from transformers import AutoTokenizer, AutoModel |
|
import faiss |
|
import torch |
|
import numpy as np |
|
|
|
def log(message): |
|
print(f"β
{message}") |
|
|
|
|
|
|
|
datasets = { |
|
"sales": load_dataset("goendalf666/sales-conversations"), |
|
"blended": load_dataset("blended_skill_talk"), |
|
"dialog": load_dataset("daily_dialog"), |
|
"multiwoz": load_dataset("multi_woz_v22"), |
|
} |
|
|
|
|
|
model_name = "sentence-transformers/all-MiniLM-L6-v2" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModel.from_pretrained(model_name) |
|
|
|
def embed_text(texts): |
|
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=512) |
|
with torch.no_grad(): |
|
embeddings = model(**inputs).last_hidden_state.mean(dim=1).cpu().numpy() |
|
return embeddings |
|
|
|
|
|
def create_embeddings(dataset_name, dataset): |
|
print(f"Creating embeddings for {dataset_name}...") |
|
texts = [text for text in dataset["train"]['text']] |
|
embeddings = embed_text(texts) |
|
return embeddings |
|
|
|
|
|
def save_embeddings_to_faiss(embeddings, index_name="my_embeddings"): |
|
print("Saving embeddings to FAISS...") |
|
index = faiss.IndexFlatL2(embeddings.shape[1]) |
|
index.add(np.array(embeddings).astype(np.float32)) |
|
faiss.write_index(index, index_name) |
|
return index |
|
|
|
|
|
for name, dataset in datasets.items(): |
|
embeddings = create_embeddings(name, dataset) |
|
index = save_embeddings_to_faiss(embeddings) |
|
print(f"Embeddings for {name} saved to FAISS.") |
|
|