File size: 1,802 Bytes
3f5fd34 dfbcc66 3f5fd34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModel
import faiss
import torch
import numpy as np
def log(message):
print(f"β
{message}")
# β
Load datasets
datasets = {
"sales": load_dataset("goendalf666/sales-conversations"),
"blended": load_dataset("blended_skill_talk"),
"dialog": load_dataset("daily_dialog"),
"multiwoz": load_dataset("multi_woz_v22"),
}
# β
Load MiniLM model and tokenizer
model_name = "sentence-transformers/all-MiniLM-L6-v2" # Model for embeddings
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
def embed_text(texts):
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=512)
with torch.no_grad():
embeddings = model(**inputs).last_hidden_state.mean(dim=1).cpu().numpy()
return embeddings
# β
Extract and embed the datasets
def create_embeddings(dataset_name, dataset):
print(f"Creating embeddings for {dataset_name}...")
texts = [text for text in dataset["train"]['text']] # Adjust the field depending on dataset structure
embeddings = embed_text(texts)
return embeddings
# β
Save embeddings to a database
def save_embeddings_to_faiss(embeddings, index_name="my_embeddings"):
print("Saving embeddings to FAISS...")
index = faiss.IndexFlatL2(embeddings.shape[1]) # Assuming 512-dimensional embeddings
index.add(np.array(embeddings).astype(np.float32))
faiss.write_index(index, index_name) # Save FAISS index to file
return index
# β
Create embeddings for all datasets
for name, dataset in datasets.items():
embeddings = create_embeddings(name, dataset)
index = save_embeddings_to_faiss(embeddings)
print(f"Embeddings for {name} saved to FAISS.")
|