|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import faiss |
|
import numpy as np |
|
import os |
|
import time |
|
import json |
|
import threading |
|
|
|
|
|
os.system("pip install faiss-cpu") |
|
|
|
def log(message): |
|
print(f"β
{message}") |
|
|
|
DATA_DIR = "data" |
|
os.makedirs(DATA_DIR, exist_ok=True) |
|
|
|
|
|
datasets = { |
|
"sales": "goendalf666/sales-conversations", |
|
"blended": "blended_skill_talk", |
|
"dialog": "daily_dialog", |
|
"multiwoz": "multi_woz_v22", |
|
} |
|
|
|
for name, hf_name in datasets.items(): |
|
file_path = os.path.join(DATA_DIR, f"{name}.json") |
|
|
|
if os.path.exists(file_path): |
|
log(f"β
{name} dataset already stored at {file_path}") |
|
continue |
|
|
|
log(f"π₯ Downloading {name} dataset...") |
|
dataset = load_dataset(hf_name) |
|
train_data = dataset["train"] |
|
data_list = [dict(row) for row in train_data] |
|
|
|
with open(file_path, "w") as f: |
|
json.dump(data_list, f, indent=2) |
|
|
|
log(f"β
{name} dataset saved to {file_path}") |
|
|
|
|
|
def run_embeddings(): |
|
log("π Running embeddings script in background...") |
|
import embeddings |
|
log("β
Embeddings process finished.") |
|
|
|
embedding_thread = threading.Thread(target=run_embeddings) |
|
embedding_thread.start() |
|
|
|
|
|
def check_faiss(): |
|
index_path = "my_embeddings.faiss" |
|
|
|
if not os.path.exists(index_path): |
|
return "β οΈ No FAISS index found! Embeddings might still be processing." |
|
|
|
try: |
|
index = faiss.read_index(index_path) |
|
num_vectors = index.ntotal |
|
dim = index.d |
|
return f"π FAISS index contains {num_vectors} vectors.\nβ
Embedding dimension: {dim}" |
|
except Exception as e: |
|
return f"β ERROR: Failed to load FAISS index - {e}" |
|
|
|
log("π Checking FAISS embeddings...") |
|
faiss_status = check_faiss() |
|
log(faiss_status) |
|
|
|
|
|
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") |
|
|
|
def respond(message, history, system_message, max_tokens, temperature, top_p): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
response = "" |
|
|
|
for message in client.chat_completions( |
|
messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p |
|
): |
|
token = message["choices"][0]["delta"]["content"] |
|
response += token |
|
yield response |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), |
|
], |
|
) |
|
|
|
log("β
All systems go! Launching chatbot...") |
|
if __name__ == "__main__": |
|
demo.launch() |
|
|
|
|