udp app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
-
from datasets import load_dataset
|
4 |
import faiss
|
5 |
import numpy as np
|
6 |
import os
|
7 |
import time
|
8 |
-
import json
|
|
|
9 |
|
10 |
# β
Ensure FAISS is installed
|
11 |
os.system("pip install faiss-cpu")
|
@@ -13,11 +13,10 @@ os.system("pip install faiss-cpu")
|
|
13 |
def log(message):
|
14 |
print(f"β
{message}")
|
15 |
|
16 |
-
|
17 |
DATA_DIR = "data"
|
18 |
os.makedirs(DATA_DIR, exist_ok=True) # Ensure directory exists
|
19 |
|
20 |
-
# β
|
21 |
datasets = {
|
22 |
"sales": "goendalf666/sales-conversations",
|
23 |
"blended": "blended_skill_talk",
|
@@ -25,46 +24,44 @@ datasets = {
|
|
25 |
"multiwoz": "multi_woz_v22",
|
26 |
}
|
27 |
|
28 |
-
# β
Save datasets to JSON
|
29 |
for name, hf_name in datasets.items():
|
30 |
-
|
31 |
-
dataset = load_dataset(hf_name)
|
32 |
|
33 |
-
|
34 |
-
|
|
|
35 |
|
36 |
-
|
|
|
|
|
37 |
data_list = [dict(row) for row in train_data]
|
38 |
|
39 |
-
# Save to JSON
|
40 |
-
file_path = os.path.join(DATA_DIR, f"{name}.json")
|
41 |
with open(file_path, "w") as f:
|
42 |
json.dump(data_list, f, indent=2)
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
# β
Step
|
49 |
-
|
50 |
-
|
|
|
|
|
51 |
|
52 |
-
|
|
|
53 |
|
54 |
-
# β
Step
|
55 |
def check_faiss():
|
56 |
-
index_path = "my_embeddings" #
|
|
|
|
|
|
|
57 |
|
58 |
try:
|
59 |
index = faiss.read_index(index_path)
|
60 |
num_vectors = index.ntotal
|
61 |
dim = index.d
|
62 |
-
|
63 |
-
if num_vectors > 0:
|
64 |
-
return f"π FAISS index contains {num_vectors} vectors.\nβ
Embedding dimension: {dim}"
|
65 |
-
else:
|
66 |
-
return "β οΈ No embeddings found in FAISS index!"
|
67 |
-
|
68 |
except Exception as e:
|
69 |
return f"β ERROR: Failed to load FAISS index - {e}"
|
70 |
|
@@ -72,7 +69,7 @@ log("π Checking FAISS embeddings...")
|
|
72 |
faiss_status = check_faiss()
|
73 |
log(faiss_status)
|
74 |
|
75 |
-
# β
Step
|
76 |
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
|
77 |
|
78 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
@@ -94,7 +91,7 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
94 |
response += token
|
95 |
yield response
|
96 |
|
97 |
-
# β
Step
|
98 |
demo = gr.ChatInterface(
|
99 |
respond,
|
100 |
additional_inputs=[
|
@@ -107,5 +104,5 @@ demo = gr.ChatInterface(
|
|
107 |
|
108 |
log("β
All systems go! Launching chatbot...")
|
109 |
if __name__ == "__main__":
|
110 |
-
demo.launch()
|
111 |
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
3 |
import faiss
|
4 |
import numpy as np
|
5 |
import os
|
6 |
import time
|
7 |
+
import json
|
8 |
+
import threading # β
Run embeddings in parallel
|
9 |
|
10 |
# β
Ensure FAISS is installed
|
11 |
os.system("pip install faiss-cpu")
|
|
|
13 |
def log(message):
|
14 |
print(f"β
{message}")
|
15 |
|
|
|
16 |
DATA_DIR = "data"
|
17 |
os.makedirs(DATA_DIR, exist_ok=True) # Ensure directory exists
|
18 |
|
19 |
+
# β
Step 1: Load Datasets from HF and Save Locally
|
20 |
datasets = {
|
21 |
"sales": "goendalf666/sales-conversations",
|
22 |
"blended": "blended_skill_talk",
|
|
|
24 |
"multiwoz": "multi_woz_v22",
|
25 |
}
|
26 |
|
|
|
27 |
for name, hf_name in datasets.items():
|
28 |
+
file_path = os.path.join(DATA_DIR, f"{name}.json")
|
|
|
29 |
|
30 |
+
if os.path.exists(file_path):
|
31 |
+
log(f"β
{name} dataset already stored at {file_path}")
|
32 |
+
continue # Skip if dataset exists
|
33 |
|
34 |
+
log(f"π₯ Downloading {name} dataset...")
|
35 |
+
dataset = load_dataset(hf_name)
|
36 |
+
train_data = dataset["train"]
|
37 |
data_list = [dict(row) for row in train_data]
|
38 |
|
|
|
|
|
39 |
with open(file_path, "w") as f:
|
40 |
json.dump(data_list, f, indent=2)
|
41 |
|
42 |
+
log(f"β
{name} dataset saved to {file_path}")
|
|
|
|
|
43 |
|
44 |
+
# β
Step 2: Run Embeddings in a Separate Thread
|
45 |
+
def run_embeddings():
|
46 |
+
log("π Running embeddings script in background...")
|
47 |
+
import embeddings # β
This will automatically run embeddings.py
|
48 |
+
log("β
Embeddings process finished.")
|
49 |
|
50 |
+
embedding_thread = threading.Thread(target=run_embeddings)
|
51 |
+
embedding_thread.start() # β
Start embedding in background
|
52 |
|
53 |
+
# β
Step 3: Check FAISS index
|
54 |
def check_faiss():
|
55 |
+
index_path = "my_embeddings.faiss" # Ensure file has .faiss extension
|
56 |
+
|
57 |
+
if not os.path.exists(index_path):
|
58 |
+
return "β οΈ No FAISS index found! Embeddings might still be processing."
|
59 |
|
60 |
try:
|
61 |
index = faiss.read_index(index_path)
|
62 |
num_vectors = index.ntotal
|
63 |
dim = index.d
|
64 |
+
return f"π FAISS index contains {num_vectors} vectors.\nβ
Embedding dimension: {dim}"
|
|
|
|
|
|
|
|
|
|
|
65 |
except Exception as e:
|
66 |
return f"β ERROR: Failed to load FAISS index - {e}"
|
67 |
|
|
|
69 |
faiss_status = check_faiss()
|
70 |
log(faiss_status)
|
71 |
|
72 |
+
# β
Step 4: Initialize Chatbot
|
73 |
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
|
74 |
|
75 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
|
91 |
response += token
|
92 |
yield response
|
93 |
|
94 |
+
# β
Step 5: Start Chatbot Interface
|
95 |
demo = gr.ChatInterface(
|
96 |
respond,
|
97 |
additional_inputs=[
|
|
|
104 |
|
105 |
log("β
All systems go! Launching chatbot...")
|
106 |
if __name__ == "__main__":
|
107 |
+
demo.launch() # β
FIXED typo
|
108 |
|