sms_agent / app.py
abrah926's picture
debug
7b203d7 verified
raw
history blame
3.63 kB
import os
import gradio as gr
from huggingface_hub import InferenceClient
from datasets import load_dataset
import time
import faiss
import numpy as np
# βœ… Install FAISS if missing
os.system("pip install faiss-cpu")
def log(message):
print(f"βœ… {message}")
# βœ… Load the datasets
datasets = {
"sales": load_dataset("goendalf666/sales-conversations", trust_remote_code=True),
"blended": load_dataset("blended_skill_talk", trust_remote_code=True),
"dialog": load_dataset("daily_dialog", trust_remote_code=True),
"multiwoz": load_dataset("multi_woz_v22", trust_remote_code=True),
}
# Optional: Print dataset names and sizes
for name, dataset in datasets.items():
print(f"{name}: {len(dataset['train'])} examples")
# Initialize the model client (use correct model for chatbot)
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
# Chatbot response function
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completions(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message["choices"][0]["delta"]["content"]
response += token
yield response
# Gradio interface for chatbot
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
def start_embedding():
# Include your embedding logic here (from embeddings.py)
log("Embedding started...")
time.sleep(2) # Simulating embedding process
log("Embedding process finished.")
# Create Gradio interface with a button to start the embedding
demo = gr.Interface(
fn=start_embedding,
inputs=None,
outputs="text",
live=True,
title="Embedding Trigger"
)
# βœ… Function to check FAISS index
def check_faiss():
index_path = "my_embeddings" # Adjust if needed
try:
index = faiss.read_index(index_path)
num_vectors = index.ntotal
dim = index.d
if num_vectors > 0:
sample_vectors = index.reconstruct_n(0, min(5, num_vectors)) # Get first 5 embeddings
return f"πŸ“Š FAISS index contains {num_vectors} vectors.\nβœ… Embedding dimension: {dim}\n🧐 Sample: {sample_vectors[:2]} ..."
else:
return "⚠️ No embeddings found in FAISS index!"
except Exception as e:
return f"❌ ERROR: Failed to load FAISS index - {e}"
# βœ… Add a Gradio button to trigger FAISS check
with gr.Blocks() as demo:
gr.Markdown("### πŸ” FAISS Embedding Check")
check_button = gr.Button("πŸ”Ž Check FAISS Embeddings")
output_text = gr.Textbox(label="FAISS Status", interactive=False)
check_button.click(fn=check_faiss, outputs=output_text)
# Launch Gradio app
if __name__ == "__main__":
demo.launch()