|
import os |
|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from datasets import load_dataset |
|
import time |
|
import faiss |
|
import numpy as np |
|
|
|
|
|
os.system("pip install faiss-cpu") |
|
|
|
def log(message): |
|
print(f"β
{message}") |
|
|
|
|
|
|
|
datasets = { |
|
"sales": load_dataset("goendalf666/sales-conversations", trust_remote_code=True), |
|
"blended": load_dataset("blended_skill_talk", trust_remote_code=True), |
|
"dialog": load_dataset("daily_dialog", trust_remote_code=True), |
|
"multiwoz": load_dataset("multi_woz_v22", trust_remote_code=True), |
|
} |
|
|
|
|
|
for name, dataset in datasets.items(): |
|
print(f"{name}: {len(dataset['train'])} examples") |
|
|
|
|
|
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for message in client.chat_completions( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = message["choices"][0]["delta"]["content"] |
|
response += token |
|
yield response |
|
|
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
def start_embedding(): |
|
|
|
log("Embedding started...") |
|
time.sleep(2) |
|
log("Embedding process finished.") |
|
|
|
|
|
demo = gr.Interface( |
|
fn=start_embedding, |
|
inputs=None, |
|
outputs="text", |
|
live=True, |
|
title="Embedding Trigger" |
|
) |
|
|
|
|
|
|
|
def check_faiss(): |
|
index_path = "my_embeddings" |
|
|
|
try: |
|
index = faiss.read_index(index_path) |
|
num_vectors = index.ntotal |
|
dim = index.d |
|
|
|
if num_vectors > 0: |
|
sample_vectors = index.reconstruct_n(0, min(5, num_vectors)) |
|
return f"π FAISS index contains {num_vectors} vectors.\nβ
Embedding dimension: {dim}\nπ§ Sample: {sample_vectors[:2]} ..." |
|
else: |
|
return "β οΈ No embeddings found in FAISS index!" |
|
|
|
except Exception as e: |
|
return f"β ERROR: Failed to load FAISS index - {e}" |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("### π FAISS Embedding Check") |
|
|
|
check_button = gr.Button("π Check FAISS Embeddings") |
|
output_text = gr.Textbox(label="FAISS Status", interactive=False) |
|
|
|
check_button.click(fn=check_faiss, outputs=output_text) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|