File size: 3,629 Bytes
7b203d7
b6a467a
 
54072ad
36f1be7
4e2c9cd
 
241003b
 
 
b6a467a
5606667
 
 
 
54072ad
 
94a52b9
 
8353536
94a52b9
54072ad
e63c0a3
54072ad
 
 
b6a467a
54072ad
 
b6a467a
54072ad
b6a467a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54072ad
b6a467a
 
 
 
 
 
54072ad
b6a467a
 
 
 
54072ad
b6a467a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36f1be7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e2c9cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54072ad
b6a467a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import gradio as gr
from huggingface_hub import InferenceClient
from datasets import load_dataset
import time
import faiss
import numpy as np

# βœ… Install FAISS if missing
os.system("pip install faiss-cpu")

def log(message):
    print(f"βœ… {message}")


# βœ… Load the datasets
datasets = {
    "sales": load_dataset("goendalf666/sales-conversations", trust_remote_code=True),
    "blended": load_dataset("blended_skill_talk", trust_remote_code=True),
    "dialog": load_dataset("daily_dialog", trust_remote_code=True),
    "multiwoz": load_dataset("multi_woz_v22", trust_remote_code=True),
}

# Optional: Print dataset names and sizes
for name, dataset in datasets.items():
    print(f"{name}: {len(dataset['train'])} examples")

# Initialize the model client (use correct model for chatbot)
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")

# Chatbot response function
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completions(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message["choices"][0]["delta"]["content"]
        response += token
        yield response


# Gradio interface for chatbot
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

def start_embedding():
    # Include your embedding logic here (from embeddings.py)
    log("Embedding started...")
    time.sleep(2)  # Simulating embedding process
    log("Embedding process finished.")

# Create Gradio interface with a button to start the embedding
demo = gr.Interface(
    fn=start_embedding,
    inputs=None,
    outputs="text",
    live=True,
    title="Embedding Trigger"
)


# βœ… Function to check FAISS index
def check_faiss():
    index_path = "my_embeddings"  # Adjust if needed

    try:
        index = faiss.read_index(index_path)
        num_vectors = index.ntotal
        dim = index.d

        if num_vectors > 0:
            sample_vectors = index.reconstruct_n(0, min(5, num_vectors))  # Get first 5 embeddings
            return f"πŸ“Š FAISS index contains {num_vectors} vectors.\nβœ… Embedding dimension: {dim}\n🧐 Sample: {sample_vectors[:2]} ..."
        else:
            return "⚠️ No embeddings found in FAISS index!"

    except Exception as e:
        return f"❌ ERROR: Failed to load FAISS index - {e}"

# βœ… Add a Gradio button to trigger FAISS check
with gr.Blocks() as demo:
    gr.Markdown("### πŸ” FAISS Embedding Check")
    
    check_button = gr.Button("πŸ”Ž Check FAISS Embeddings")
    output_text = gr.Textbox(label="FAISS Status", interactive=False)

    check_button.click(fn=check_faiss, outputs=output_text)

# Launch Gradio app
if __name__ == "__main__":
    demo.launch()