running faiss script
Browse files
app.py
CHANGED
@@ -2,6 +2,8 @@ import gradio as gr
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from datasets import load_dataset
|
4 |
import time
|
|
|
|
|
5 |
|
6 |
def log(message):
|
7 |
print(f"β
{message}")
|
@@ -88,6 +90,33 @@ demo = gr.Interface(
|
|
88 |
)
|
89 |
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
# Launch Gradio app
|
92 |
if __name__ == "__main__":
|
93 |
demo.launch()
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from datasets import load_dataset
|
4 |
import time
|
5 |
+
import faiss
|
6 |
+
import numpy as np
|
7 |
|
8 |
def log(message):
|
9 |
print(f"β
{message}")
|
|
|
90 |
)
|
91 |
|
92 |
|
93 |
+
# β
Function to check FAISS index
|
94 |
+
def check_faiss():
|
95 |
+
index_path = "my_embeddings" # Adjust if needed
|
96 |
+
|
97 |
+
try:
|
98 |
+
index = faiss.read_index(index_path)
|
99 |
+
num_vectors = index.ntotal
|
100 |
+
dim = index.d
|
101 |
+
|
102 |
+
if num_vectors > 0:
|
103 |
+
sample_vectors = index.reconstruct_n(0, min(5, num_vectors)) # Get first 5 embeddings
|
104 |
+
return f"π FAISS index contains {num_vectors} vectors.\nβ
Embedding dimension: {dim}\nπ§ Sample: {sample_vectors[:2]} ..."
|
105 |
+
else:
|
106 |
+
return "β οΈ No embeddings found in FAISS index!"
|
107 |
+
|
108 |
+
except Exception as e:
|
109 |
+
return f"β ERROR: Failed to load FAISS index - {e}"
|
110 |
+
|
111 |
+
# β
Add a Gradio button to trigger FAISS check
|
112 |
+
with gr.Blocks() as demo:
|
113 |
+
gr.Markdown("### π FAISS Embedding Check")
|
114 |
+
|
115 |
+
check_button = gr.Button("π Check FAISS Embeddings")
|
116 |
+
output_text = gr.Textbox(label="FAISS Status", interactive=False)
|
117 |
+
|
118 |
+
check_button.click(fn=check_faiss, outputs=output_text)
|
119 |
+
|
120 |
# Launch Gradio app
|
121 |
if __name__ == "__main__":
|
122 |
demo.launch()
|