Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
MODEL_ID = "rinna/bilingual-gpt-neox-4b-instruction-ppo" | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_ID, | |
load_in_8bit=True, | |
device_map="auto" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=False) | |
device = model.device | |
device | |
user_prompt_template = "ユーザー: Hello, you are an assistant that helps me learn Japanese. I am going to ask you a question, so please answer *briefly*." | |
system_prompt_template = "システム: Sure, I will answer briefly. What can I do for you?" | |
# one-shot | |
user_sample = "ユーザー: 日本で一番高い山は何ですか?" | |
system_sample = "システム: 富士山です。高さは3776メートルです。" | |
# 質問 | |
user_prerix = "ユーザー: " | |
user_question = "人工知能とは何ですか?" | |
system_prefix = "システム: " | |
# プロンプトの整形 | |
prompt = user_prompt_template + "\n" + system_prompt_template + "\n" | |
prompt += user_sample + "\n" + system_sample + "\n" | |
prompt += user_prerix + user_question + "\n" + system_prefix | |
inputs = tokenizer( | |
prompt, | |
add_special_tokens=False, # プロンプトに余計なトークンが付属するのを防ぐ | |
return_tensors="pt" | |
) | |
inputs = inputs.to(model.device) | |
with torch.no_grad(): | |
tokens = model.generate( | |
**inputs, | |
temperature=0.3, | |
top_p=0.85, | |
max_new_tokens=2048, | |
repetition_penalty=1.05, | |
do_sample=True, | |
pad_token_id=tokenizer.pad_token_id, | |
bos_token_id=tokenizer.bos_token_id, | |
eos_token_id=tokenizer.eos_token_id | |
) | |
tokens | |
output = tokenizer.decode( | |
tokens[0], | |
skip_special_tokens=True # 出力に余計なトークンが付属するのを防ぐ | |
) | |
print(output) | |
output[len(prompt):] | |
def generate(user_question, | |
temperature=0.3, | |
top_p=0.85, | |
max_new_tokens=2048, | |
repetition_penalty=1.05 | |
): | |
user_prompt_template = "ユーザー: Hello, you are an assistant that helps me learn Japanese. I am going to ask you a question, so please answer *briefly*." | |
system_prompt_template = "システム: Sure, I will answer briefly. What can I do for you?" | |
user_sample = "ユーザー: 日本で一番高い山は何ですか?" | |
system_sample = "システム: 富士山です。高さは3776メートルです。" | |
user_prerix = "ユーザー: " | |
system_prefix = "システム: " | |
prompt = user_prompt_template + "\n" + system_prompt_template + "\n" | |
prompt += user_sample + "\n" + system_sample + "\n" | |
prompt += user_prerix + user_question + "\n" + system_prefix | |
inputs = tokenizer(prompt, add_special_tokens=False, return_tensors="pt") | |
inputs = inputs.to(model.device) | |
with torch.no_grad(): | |
tokens = model.generate( | |
**inputs, | |
temperature=temperature, | |
top_p=top_p, | |
max_new_tokens=max_new_tokens, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
pad_token_id=tokenizer.pad_token_id, | |
bos_token_id=tokenizer.bos_token_id, | |
eos_token_id=tokenizer.eos_token_id | |
) | |
output = tokenizer.decode(tokens[0], skip_special_tokens=True) | |
return output[len(prompt):] | |
output = generate('人工知能とは何ですか?') | |
output | |
import gradio as gr # 慣習としてgrと略記 | |
with gr.Blocks() as demo: | |
inputs = gr.Textbox(label="Question:", placeholder="人工知能とは何ですか?") | |
outputs = gr.Textbox(label="Answer:") | |
btn = gr.Button("Send") | |
# ボタンが押された時の動作を以下のように定義する: | |
# 「inputs内の値を入力としてモデルに渡し、その戻り値をoutputsの値として設定する」 | |
btn.click(fn=generate, inputs=inputs, outputs=outputs) | |
if __name__ == "__main__": | |
demo.launch() | |
def generate_response(user_question, | |
chat_history, | |
temperature=0.3, | |
top_p=0.85, | |
max_new_tokens=2048, | |
repetition_penalty=1.05 | |
): | |
user_prompt_template = "ユーザー: Hello, you are an assistant that helps me learn Japanese. I am going to ask you a question, so please answer *briefly*." | |
system_prompt_template = "システム: Sure, I will answer briefly. What can I do for you?" | |
user_sample = "ユーザー: 日本で一番高い山は何ですか?" | |
system_sample = "システム: 富士山です。高さは3776メートルです。" | |
user_prerix = "ユーザー: " | |
system_prefix = "システム: " | |
prompt = user_prompt_template + "\n" + system_prompt_template + "\n" | |
if len(chat_history) < 1: | |
prompt += user_sample + "\n" + system_sample + "\n" | |
else: | |
u = chat_history[-1][0] | |
s = chat_history[-1][1] | |
prompt += user_prerix + u + "\n" + system_prefix + s + "\n" | |
prompt += user_prerix + user_question + "\n" + system_prefix | |
inputs = tokenizer(prompt, add_special_tokens=False, return_tensors="pt") | |
inputs = inputs.to(model.device) | |
with torch.no_grad(): | |
tokens = model.generate( | |
**inputs, | |
temperature=temperature, | |
top_p=top_p, | |
max_new_tokens=max_new_tokens, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
pad_token_id=tokenizer.pad_token_id, | |
bos_token_id=tokenizer.bos_token_id, | |
eos_token_id=tokenizer.eos_token_id | |
) | |
output = tokenizer.decode(tokens[0], skip_special_tokens=True) | |
return output[len(prompt):] | |
with gr.Blocks() as demo: | |
chat_history = gr.Chatbot() | |
user_message = gr.Textbox(label="Question:", placeholder="人工知能とは何ですか?") | |
clear = gr.ClearButton([user_message, chat_history]) | |
def response(user_message, chat_history): | |
system_message = generate_response(user_message, chat_history) | |
chat_history.append((user_message, system_message)) | |
return "", chat_history | |
user_message.submit(response, inputs=[user_message, chat_history], outputs=[user_message, chat_history]) | |
if __name__ == "__main__": | |
demo.launch() | |