import torch from transformers import AutoModelForCausalLM, AutoTokenizer MODEL_ID = "rinna/bilingual-gpt-neox-4b-instruction-ppo" model = AutoModelForCausalLM.from_pretrained( MODEL_ID, load_in_8bit=True, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=False) device = model.device device user_prompt_template = "ユーザー: Hello, you are an assistant that helps me learn Japanese. I am going to ask you a question, so please answer *briefly*." system_prompt_template = "システム: Sure, I will answer briefly. What can I do for you?" # one-shot user_sample = "ユーザー: 日本で一番高い山は何ですか?" system_sample = "システム: 富士山です。高さは3776メートルです。" # 質問 user_prerix = "ユーザー: " user_question = "人工知能とは何ですか?" system_prefix = "システム: " # プロンプトの整形 prompt = user_prompt_template + "\n" + system_prompt_template + "\n" prompt += user_sample + "\n" + system_sample + "\n" prompt += user_prerix + user_question + "\n" + system_prefix inputs = tokenizer( prompt, add_special_tokens=False, # プロンプトに余計なトークンが付属するのを防ぐ return_tensors="pt" ) inputs = inputs.to(model.device) with torch.no_grad(): tokens = model.generate( **inputs, temperature=0.3, top_p=0.85, max_new_tokens=2048, repetition_penalty=1.05, do_sample=True, pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id ) tokens output = tokenizer.decode( tokens[0], skip_special_tokens=True # 出力に余計なトークンが付属するのを防ぐ ) print(output) output[len(prompt):] def generate(user_question, temperature=0.3, top_p=0.85, max_new_tokens=2048, repetition_penalty=1.05 ): user_prompt_template = "ユーザー: Hello, you are an assistant that helps me learn Japanese. I am going to ask you a question, so please answer *briefly*." system_prompt_template = "システム: Sure, I will answer briefly. What can I do for you?" user_sample = "ユーザー: 日本で一番高い山は何ですか?" system_sample = "システム: 富士山です。高さは3776メートルです。" user_prerix = "ユーザー: " system_prefix = "システム: " prompt = user_prompt_template + "\n" + system_prompt_template + "\n" prompt += user_sample + "\n" + system_sample + "\n" prompt += user_prerix + user_question + "\n" + system_prefix inputs = tokenizer(prompt, add_special_tokens=False, return_tensors="pt") inputs = inputs.to(model.device) with torch.no_grad(): tokens = model.generate( **inputs, temperature=temperature, top_p=top_p, max_new_tokens=max_new_tokens, repetition_penalty=repetition_penalty, do_sample=True, pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id ) output = tokenizer.decode(tokens[0], skip_special_tokens=True) return output[len(prompt):] output = generate('人工知能とは何ですか?') output import gradio as gr # 慣習としてgrと略記 with gr.Blocks() as demo: inputs = gr.Textbox(label="Question:", placeholder="人工知能とは何ですか?") outputs = gr.Textbox(label="Answer:") btn = gr.Button("Send") # ボタンが押された時の動作を以下のように定義する: # 「inputs内の値を入力としてモデルに渡し、その戻り値をoutputsの値として設定する」 btn.click(fn=generate, inputs=inputs, outputs=outputs) if __name__ == "__main__": demo.launch() def generate_response(user_question, chat_history, temperature=0.3, top_p=0.85, max_new_tokens=2048, repetition_penalty=1.05 ): user_prompt_template = "ユーザー: Hello, you are an assistant that helps me learn Japanese. I am going to ask you a question, so please answer *briefly*." system_prompt_template = "システム: Sure, I will answer briefly. What can I do for you?" user_sample = "ユーザー: 日本で一番高い山は何ですか?" system_sample = "システム: 富士山です。高さは3776メートルです。" user_prerix = "ユーザー: " system_prefix = "システム: " prompt = user_prompt_template + "\n" + system_prompt_template + "\n" if len(chat_history) < 1: prompt += user_sample + "\n" + system_sample + "\n" else: u = chat_history[-1][0] s = chat_history[-1][1] prompt += user_prerix + u + "\n" + system_prefix + s + "\n" prompt += user_prerix + user_question + "\n" + system_prefix inputs = tokenizer(prompt, add_special_tokens=False, return_tensors="pt") inputs = inputs.to(model.device) with torch.no_grad(): tokens = model.generate( **inputs, temperature=temperature, top_p=top_p, max_new_tokens=max_new_tokens, repetition_penalty=repetition_penalty, do_sample=True, pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id ) output = tokenizer.decode(tokens[0], skip_special_tokens=True) return output[len(prompt):] with gr.Blocks() as demo: chat_history = gr.Chatbot() user_message = gr.Textbox(label="Question:", placeholder="人工知能とは何ですか?") clear = gr.ClearButton([user_message, chat_history]) def response(user_message, chat_history): system_message = generate_response(user_message, chat_history) chat_history.append((user_message, system_message)) return "", chat_history user_message.submit(response, inputs=[user_message, chat_history], outputs=[user_message, chat_history]) if __name__ == "__main__": demo.launch()