Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" PyTorch ParlerTTS model.""" | |
import copy | |
import inspect | |
import math | |
import random | |
from dataclasses import dataclass | |
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union, List | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn import CrossEntropyLoss | |
from transformers import AutoConfig, AutoModel, AutoModelForTextEncoding | |
from transformers.activations import ACT2FN | |
from transformers.cache_utils import ( | |
Cache, | |
DynamicCache, | |
EncoderDecoderCache, | |
SlidingWindowCache, | |
StaticCache, | |
) | |
from transformers.generation.configuration_utils import GenerationConfig, GenerationMode | |
from transformers.generation.logits_process import LogitsProcessorList | |
from transformers.generation.stopping_criteria import StoppingCriteriaList | |
from transformers.modeling_attn_mask_utils import ( | |
AttentionMaskConverter, | |
_prepare_4d_attention_mask, | |
_prepare_4d_attention_mask_for_sdpa, | |
) | |
from transformers.modeling_outputs import ( | |
BaseModelOutput, | |
BaseModelOutputWithPastAndCrossAttentions, | |
CausalLMOutputWithCrossAttentions, | |
ModelOutput, | |
Seq2SeqLMOutput, | |
) | |
from transformers.modeling_utils import PreTrainedModel | |
from transformers.utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
logging, | |
replace_return_docstrings, | |
is_torchdynamo_compiling, | |
) | |
from transformers.utils.import_utils import is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10 | |
from .configuration_parler_tts import ParlerTTSConfig, ParlerTTSDecoderConfig | |
from .dac_wrapper import DACConfig, DACModel | |
from .logits_processors import ParlerTTSLogitsProcessor | |
from importlib.metadata import version | |
from packaging.version import Version | |
is_dac_integrated_to_transformers = Version(version("transformers")) > Version("4.44.2dev") | |
if not is_dac_integrated_to_transformers: | |
AutoConfig.register("dac", DACConfig) | |
else: | |
AutoConfig.register("dac_on_the_hub", DACConfig) | |
AutoModel.register(DACConfig, DACModel) | |
if TYPE_CHECKING: | |
from transformers.generation.streamers import BaseStreamer | |
logger = logging.get_logger(__name__) | |
if is_flash_attn_2_available(): | |
from flash_attn import flash_attn_func, flash_attn_varlen_func | |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa | |
else: | |
logger.warn("Flash attention 2 is not installed") | |
_CONFIG_FOR_DOC = "ParlerTTSConfig" | |
_CHECKPOINT_FOR_DOC = "parler-tts/parler-tts-mini-v1" | |
MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"parler-tts/parler-tts-mini-v1", | |
# See all ParlerTTS models at https://huggingface.co/models?filter=parler_tts | |
] | |
NEED_SETUP_CACHE_CLASSES_MAPPING = {"static": StaticCache, "sliding_window": SlidingWindowCache} | |
class ParlerTTSSeq2SeqLMOutput(ModelOutput): | |
""" | |
Base class for sequence-to-sequence language models outputs. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Language modeling loss. | |
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. | |
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the | |
self-attention heads. | |
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the | |
weighted average in the cross-attention heads. | |
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of the last layer of the encoder of the model. | |
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. | |
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the | |
self-attention heads. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None | |
decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
encoder_last_hidden_state: Optional[torch.FloatTensor] = None | |
encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
per_codebook_losses: Optional[List[torch.FloatTensor]] = None | |
class ParlerTTSCausalLMOutputWithCrossAttentions(ModelOutput): | |
""" | |
Base class for causal language model (or autoregressive) outputs. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Language modeling loss (for next-token prediction). | |
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Cross attentions weights after the attention softmax, used to compute the weighted average in the | |
cross-attention heads. | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `torch.FloatTensor` tuples of length `config.n_layers`, with each tuple containing the cached key, | |
value states of the self-attention and the cross-attention layers if model is used in encoder-decoder | |
setting. Only relevant if `config.is_decoder = True`. | |
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see | |
`past_key_values` input) to speed up sequential decoding. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None | |
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None | |
per_codebook_losses: Optional[List[torch.FloatTensor]] = None | |
def apply_delay_pattern_mask(input_ids, decoder_pad_token_mask): | |
"""Apply a delay pattern mask to the decoder input ids, only preserving predictions where | |
the mask is set to -1, and otherwise setting to the value detailed in the mask.""" | |
seq_len = input_ids.shape[-1] | |
decoder_pad_token_mask = decoder_pad_token_mask[..., :seq_len] | |
input_ids = torch.where(decoder_pad_token_mask == -1, input_ids, decoder_pad_token_mask) | |
return input_ids | |
def build_delay_pattern_mask( | |
input_ids: torch.LongTensor, bos_token_id: int, pad_token_id: int, max_length: int, num_codebooks: int | |
): | |
"""Build a delayed pattern mask to the input_ids. Each codebook is offset by the previous codebook by | |
one, giving a delayed pattern mask at the start of sequence and end of sequence. Take the example where there | |
are 4 codebooks and a max sequence length of 8, we have the delayed pattern mask of shape `(codebooks, | |
seq_len)`: | |
- [B, -1, -1, -1, -1, P, P, P] | |
- [B, B, -1, -1, -1, -1, P, P] | |
- [B, B, B, -1, -1, -1, -1, P] | |
- [B, B, B, B, -1, -1, -1, -1] | |
where P is the special padding token id and -1 indicates that the token is valid for prediction. If we include | |
a prompt (decoder input ids), the -1 positions indicate where new tokens should be predicted. Otherwise, the | |
mask is set to the value in the prompt: | |
- [B, a, b, -1, -1, P, P, P] | |
- [B, B, c, d, -1, -1, P, P] | |
- [B, B, B, e, f, -1, -1, P] | |
- [B, B, B, B, g, h, -1, -1] | |
where a-h indicate the input prompt (decoder input ids) that are offset by 1. Now, we only override the -1 | |
tokens in our prediction. | |
""" | |
# (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len) | |
input_ids = input_ids.reshape(-1, num_codebooks, input_ids.shape[-1]) | |
bsz, num_codebooks, seq_len = input_ids.shape | |
input_ids_shifted = torch.ones((bsz, num_codebooks, max_length), dtype=torch.long, device=input_ids.device) * -1 | |
# we only apply the mask if we have a large enough seq len - otherwise we return as is | |
if max_length < 2 * num_codebooks - 1: | |
return input_ids.reshape(bsz * num_codebooks, -1), input_ids_shifted.reshape(bsz * num_codebooks, -1) | |
# fill the shifted ids with the prompt entries, offset by the codebook idx | |
for codebook in range(num_codebooks): | |
# mono channel - loop over the codebooks one-by-one | |
input_ids_shifted[:, codebook, codebook : seq_len + codebook] = input_ids[:, codebook] | |
# construct a pattern mask that indicates the positions of padding tokens for each codebook | |
# first fill the upper triangular part (the EOS padding) | |
eos_delay_pattern = torch.triu( | |
torch.ones((num_codebooks, max_length), dtype=torch.bool), diagonal=max_length - num_codebooks + 1 | |
) | |
# then fill the lower triangular part (the BOS padding) | |
bos_delay_pattern = torch.tril(torch.ones((num_codebooks, max_length), dtype=torch.bool)) | |
bos_mask = ~(bos_delay_pattern).to(input_ids.device) | |
eos_mask = ~(eos_delay_pattern).to(input_ids.device) | |
mask = ~(bos_delay_pattern + eos_delay_pattern).to(input_ids.device) | |
input_ids = mask * input_ids_shifted + ~bos_mask * bos_token_id + ~eos_mask * pad_token_id | |
# find the first position to start generating - this is the first place we have the -1 token | |
# and will always be in the first codebook (since it has no codebook offset) | |
first_codebook_ids = input_ids[:, 0, :] | |
start_ids = (first_codebook_ids == -1).nonzero()[:, 1] | |
if len(start_ids) > 0: | |
first_start_id = min(start_ids) | |
else: | |
# we have no tokens that need to be filled - return entire matrix of input ids | |
first_start_id = seq_len | |
# (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len) | |
pattern_mask = input_ids.reshape(bsz * num_codebooks, -1) | |
input_ids = input_ids[..., :first_start_id].reshape(bsz * num_codebooks, -1) | |
return input_ids, pattern_mask | |
# Copied from transformers.models.llama.modeling_llama.repeat_kv | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
""" | |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
class ParlerTTSUnconditionalInput(ModelOutput): | |
""" | |
Args: | |
encoder_outputs (`Tuple[torch.FloatTensor]` of length 1, with tensor shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the text encoder model. | |
attention_mask (`torch.LongTensor`) of shape `(batch_size, sequence_length)`, *optional*): | |
Encoder attention mask to avoid performing attention on padding token indices. Mask values selected in `[0, | |
1]`: 1 for tokens that are **not masked**, 0 for tokens that are **masked**. | |
""" | |
encoder_outputs: Tuple[torch.FloatTensor] = None | |
attention_mask: torch.LongTensor = None | |
# Copied from transformers.models.encoder_decoder.modeling_encoder_decoder.shift_tokens_right | |
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): | |
""" | |
Shift input ids one token to the right. | |
""" | |
shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() | |
if decoder_start_token_id is None: | |
raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") | |
shifted_input_ids[:, 0] = decoder_start_token_id | |
if pad_token_id is None: | |
raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") | |
# replace possible -100 values in labels by `pad_token_id` | |
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
return shifted_input_ids | |
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenSinusoidalPositionalEmbedding with Musicgen->ParlerTTS | |
class ParlerTTSSinusoidalPositionalEmbedding(nn.Module): | |
"""This module produces sinusoidal positional embeddings of any length.""" | |
def __init__(self, num_positions: int, embedding_dim: int): | |
super().__init__() | |
self.embedding_dim = embedding_dim | |
self.make_weights(num_positions, embedding_dim) | |
def make_weights(self, num_embeddings: int, embedding_dim: int): | |
emb_weights = self.get_embedding(num_embeddings, embedding_dim) | |
if hasattr(self, "weights"): | |
# in forward put the weights on the correct dtype and device of the param | |
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) | |
self.weights = nn.Parameter(emb_weights) | |
self.weights.requires_grad = False | |
self.weights.detach_() | |
def get_embedding(num_embeddings: int, embedding_dim: int): | |
""" | |
Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the | |
description in Section 3.5 of "Attention Is All You Need". | |
""" | |
half_dim = embedding_dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) | |
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) | |
emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=1).view(num_embeddings, -1) | |
if embedding_dim % 2 == 1: | |
# zero pad | |
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) | |
return emb.to(torch.get_default_dtype()) | |
def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): | |
bsz, seq_len, _ = input_ids.size() | |
# Create the position ids from the input token ids. | |
position_ids = torch.arange(seq_len, device=input_ids.device) + past_key_values_length | |
# expand embeddings if needed | |
if seq_len > self.weights.size(0): | |
self.make_weights(seq_len + self.offset, self.embedding_dim) | |
return self.weights.index_select(0, position_ids.view(-1)).detach() | |
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->ParlerTTS | |
class ParlerTTSRotaryEmbedding(nn.Module): | |
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): | |
super().__init__() | |
self.scaling_factor = scaling_factor | |
self.dim = dim | |
self.max_position_embeddings = max_position_embeddings | |
self.base = base | |
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim)) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
# For BC we register cos and sin cached | |
self.max_seq_len_cached = max_position_embeddings | |
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq) | |
t = t / self.scaling_factor | |
freqs = torch.outer(t, self.inv_freq) | |
# Different from paper, but it uses a different permutation in order to obtain the same calculation | |
emb = torch.cat((freqs, freqs), dim=-1) | |
self.register_buffer("_cos_cached", emb.cos().to(torch.get_default_dtype()), persistent=False) | |
self.register_buffer("_sin_cached", emb.sin().to(torch.get_default_dtype()), persistent=False) | |
# Ignore copy | |
def forward(self, device_type, position_ids): | |
# x: [bs, num_attention_heads, seq_len, head_size] | |
inv_freq_expanded = self.inv_freq[None, :, None].expand(position_ids.shape[0], -1, 1) | |
position_ids_expanded = position_ids[:, None, :] | |
# Force float32 since bfloat16 loses precision on long contexts | |
# See https://github.com/huggingface/transformers/pull/29285 | |
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | |
with torch.autocast(device_type=device_type, enabled=False): | |
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | |
emb = torch.cat((freqs, freqs), dim=-1) | |
cos = emb.cos() | |
sin = emb.sin() | |
return cos, sin | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_rotary_pos_emb(x, cos, sin, unsqueeze_dim=1): | |
"""Applies Rotary Position Embedding to the query and key tensors. | |
Args: | |
x (`torch.Tensor`): The tensor over which to apply the rope embeddings | |
cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
sin (`torch.Tensor`): The sine part of the rotary embedding. | |
unsqueeze_dim (`int`, *optional*, defaults to 1): | |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
Returns: | |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
""" | |
cos = cos.unsqueeze(unsqueeze_dim) | |
sin = sin.unsqueeze(unsqueeze_dim) | |
x_embed = (x * cos) + (rotate_half(x) * sin) | |
return x_embed | |
class ParlerTTSAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper. Modified to use GQA and MQA.""" | |
def __init__( | |
self, | |
embed_dim: int, | |
num_heads: int, | |
num_key_value_heads: int, | |
dropout: float = 0.0, | |
is_decoder: bool = False, | |
bias: bool = True, | |
is_causal: bool = False, | |
rope_embeddings: bool = False, | |
layer_idx: Optional[int] = None, | |
config: Optional[ParlerTTSDecoderConfig] = None, | |
): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.head_dim = embed_dim // num_heads | |
self.num_key_value_heads = num_key_value_heads | |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
self.config = config | |
if (self.head_dim * num_heads) != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | |
f" and `num_heads`: {num_heads})." | |
) | |
self.scaling = self.head_dim**-0.5 | |
self.is_decoder = is_decoder | |
self.is_causal = is_causal | |
if layer_idx is None and is_decoder: | |
logger.warning_once( | |
f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and " | |
"will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " | |
"when creating this class." | |
) | |
self.layer_idx = layer_idx | |
self.k_proj = nn.Linear(embed_dim, self.num_key_value_heads * self.head_dim, bias=bias) | |
self.v_proj = nn.Linear(embed_dim, self.num_key_value_heads * self.head_dim, bias=bias) | |
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.rope_embeddings = rope_embeddings | |
def _shape_query(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def _shape_key_value(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2).contiguous() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[EncoderDecoderCache] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
cos: Optional[torch.LongTensor] = None, | |
sin: Optional[torch.LongTensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len = hidden_states.shape[:2] | |
# get query proj | |
query_states = self.q_proj(hidden_states) * self.scaling | |
query_states = self._shape_query(query_states, tgt_len, bsz) | |
if self.rope_embeddings: | |
query_states = apply_rotary_pos_emb(query_states, cos, sin) | |
if past_key_value is not None: | |
is_updated = past_key_value.is_updated.get(self.layer_idx) | |
if is_cross_attention: | |
# after the first generated id, we can subsequently re-use all key/value_states from cache | |
past_key_value.is_updated[self.layer_idx] = True | |
past_key_value = past_key_value.cross_attention_cache | |
else: | |
past_key_value = past_key_value.self_attention_cache | |
# use key_value_states if cross attention | |
current_states = key_value_states if key_value_states is not None else hidden_states | |
if is_cross_attention and past_key_value and is_updated: | |
# reuse k,v, cross_attentions | |
key_states = past_key_value.key_cache[self.layer_idx] | |
value_states = past_key_value.value_cache[self.layer_idx] | |
else: | |
key_states = self._shape_key_value(self.k_proj(current_states), -1, bsz) | |
value_states = self._shape_key_value(self.v_proj(current_states), -1, bsz) | |
if not is_cross_attention: | |
# cached key states already have rope applied - only apply to new state | |
key_states = apply_rotary_pos_emb(key_states, cos, sin) if self.rope_embeddings else key_states | |
if past_key_value is not None: | |
# save all key/value_states to cache to be re-used for fast auto-regressive generation | |
cache_position = cache_position if not is_cross_attention else None | |
key_states, value_states = past_key_value.update( | |
key_states, value_states, self.layer_idx, {"cache_position": cache_position} | |
) | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) | |
if attention_mask is not None: # no matter the length, we just slice it | |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
attn_weights = attn_weights + causal_mask | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if layer_head_mask is not None: | |
if layer_head_mask.size() != (self.num_heads,): | |
raise ValueError( | |
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" | |
f" {layer_head_mask.size()}" | |
) | |
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights | |
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.matmul(attn_probs, value_states) | |
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2) | |
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
# partitioned across GPUs when using tensor-parallelism. | |
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights, past_key_value | |
def _get_unpad_data(attention_mask): | |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | |
max_seqlen_in_batch = seqlens_in_batch.max().item() | |
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | |
return ( | |
indices, | |
cu_seqlens, | |
max_seqlen_in_batch, | |
) | |
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenFlashAttention2 with Musicgen->ParlerTTS | |
class ParlerTTSFlashAttention2(ParlerTTSAttention): | |
""" | |
ParlerTTS flash attention module. This module inherits from `ParlerTTSAttention` as the weights of the module stays | |
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | |
flash attention and deal with padding tokens in case the input contains any of them. | |
""" | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[EncoderDecoderCache] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
cos: Optional[torch.LongTensor] = None, | |
sin: Optional[torch.LongTensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
# ParlerTTSFlashAttention2 attention does not support output_attentions | |
if isinstance(past_key_value, StaticCache): | |
raise ValueError( | |
"The `static` cache implementation is not compatible with `attn_implementation='flash_attention_2'`. " | |
"Use `attn_implementation='sdpa'` in the meantime, and open an issue at https://github.com/huggingface/transformers" | |
) | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len = hidden_states.shape[:2] | |
# get query proj | |
query_states = self.q_proj(hidden_states).view(bsz, tgt_len, self.num_heads, self.head_dim) | |
if self.rope_embeddings: | |
query_states = apply_rotary_pos_emb(query_states, cos, sin, unsqueeze_dim=2) | |
if past_key_value is not None: | |
is_updated = past_key_value.is_updated.get(self.layer_idx) | |
if is_cross_attention: | |
# after the first generated id, we can subsequently re-use all key/value_states from cache | |
past_key_value.is_updated[self.layer_idx] = True | |
past_key_value = past_key_value.cross_attention_cache | |
else: | |
past_key_value = past_key_value.self_attention_cache | |
# use key_value_states if cross attention | |
current_states = key_value_states if key_value_states is not None else hidden_states | |
if is_cross_attention and past_key_value and is_updated: | |
# reuse k,v, cross_attentions | |
key_states = past_key_value.key_cache[self.layer_idx] | |
value_states = past_key_value.value_cache[self.layer_idx] | |
else: | |
key_states = self._shape_key_value(self.k_proj(current_states), -1, bsz) | |
value_states = self._shape_key_value(self.v_proj(current_states), -1, bsz) | |
if not is_cross_attention and self.rope_embeddings: | |
# cached key states already have rope applied - only apply to new state | |
key_states = apply_rotary_pos_emb(key_states, cos, sin) | |
if past_key_value is not None: | |
# save all key/value_states to cache to be re-used for fast auto-regressive generation | |
cache_position = cache_position if not is_cross_attention else None | |
key_states, value_states = past_key_value.update( | |
key_states, value_states, self.layer_idx, {"cache_position": cache_position} | |
) | |
# # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim] | |
# # We would need to refactor the KV cache to be able to avoid many of these transpose/reshape/view. | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
# therefore the input hidden states gets silently casted in float32. Hence, we need | |
# cast them back in the correct dtype just to be sure everything works as expected. | |
# This might slowdown training & inference so it is recommended to not cast the LayerNorms | |
# in fp32. (LlamaRMSNorm handles it correctly) | |
if query_states.dtype == torch.float32 or value_states.dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
# Handle the case where the model is quantized | |
elif hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = self.q_proj.weight.dtype | |
logger.warning_once( | |
f"The input hidden states seems to be silently casted in float32, this might be related to" | |
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
f" {target_dtype}." | |
) | |
query_states = query_states.to(target_dtype) | |
key_states = key_states.to(target_dtype) | |
value_states = value_states.to(target_dtype) | |
attn_output = self._flash_attention_forward( | |
query_states, key_states, value_states, attention_mask, tgt_len, dropout=self.dropout | |
) | |
attn_output = attn_output.reshape(bsz, tgt_len, -1) | |
attn_output = self.out_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward | |
def _flash_attention_forward( | |
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None | |
): | |
""" | |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | |
first unpad the input, then computes the attention scores and pad the final attention scores. | |
Args: | |
query_states (`torch.Tensor`): | |
Input query states to be passed to Flash Attention API | |
key_states (`torch.Tensor`): | |
Input key states to be passed to Flash Attention API | |
value_states (`torch.Tensor`): | |
Input value states to be passed to Flash Attention API | |
attention_mask (`torch.Tensor`): | |
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | |
position of padding tokens and 1 for the position of non-padding tokens. | |
dropout (`float`): | |
Attention dropout | |
softmax_scale (`float`, *optional*): | |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | |
""" | |
if not self._flash_attn_uses_top_left_mask: | |
causal = self.is_causal | |
else: | |
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. | |
causal = self.is_causal and query_length != 1 | |
# Contains at least one padding token in the sequence | |
if attention_mask is not None: | |
batch_size = query_states.shape[0] | |
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | |
query_states, key_states, value_states, attention_mask, query_length | |
) | |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
attn_output_unpad = flash_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_in_batch_q, | |
max_seqlen_k=max_seqlen_in_batch_k, | |
dropout_p=dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
) | |
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | |
else: | |
attn_output = flash_attn_func( | |
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal | |
) | |
return attn_output | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input | |
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | |
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | |
key_layer = index_first_axis( | |
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
) | |
value_layer = index_first_axis( | |
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
) | |
if query_length == kv_seq_len: | |
query_layer = index_first_axis( | |
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k | |
) | |
cu_seqlens_q = cu_seqlens_k | |
max_seqlen_in_batch_q = max_seqlen_in_batch_k | |
indices_q = indices_k | |
elif query_length == 1: | |
max_seqlen_in_batch_q = 1 | |
cu_seqlens_q = torch.arange( | |
batch_size + 1, dtype=torch.int32, device=query_layer.device | |
) # There is a memcpy here, that is very bad. | |
indices_q = cu_seqlens_q[:-1] | |
query_layer = query_layer.squeeze(1) | |
else: | |
# The -q_len: slice assumes left padding. | |
attention_mask = attention_mask[:, -query_length:] | |
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | |
return ( | |
query_layer, | |
key_layer, | |
value_layer, | |
indices_q, | |
(cu_seqlens_q, cu_seqlens_k), | |
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), | |
) | |
# Copied from transformers.models.bart.modeling_bart.BartSdpaAttention with Bart->Musicgen | |
class ParlerTTSSdpaAttention(ParlerTTSAttention): | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
key_value_states: Optional[torch.Tensor] = None, | |
past_key_value: Optional[EncoderDecoderCache] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
cos: Optional[torch.LongTensor] = None, | |
sin: Optional[torch.LongTensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
output_attentions: bool = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
if output_attentions or layer_head_mask is not None: | |
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented. | |
logger.warning_once( | |
"ParlerTTSModel is using ParlerTTSSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention" | |
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | |
) | |
return super().forward( | |
hidden_states, | |
key_value_states=key_value_states, | |
past_key_value=past_key_value, | |
attention_mask=attention_mask, | |
layer_head_mask=layer_head_mask, | |
output_attentions=output_attentions, | |
cache_position=cache_position, | |
) | |
# if key_value_states are provided this layer is used as a cross-attention layer | |
# for the decoder | |
is_cross_attention = key_value_states is not None | |
bsz, tgt_len = hidden_states.shape[:2] | |
# get query proj | |
query_states = self.q_proj(hidden_states) | |
query_states = self._shape_query(query_states, tgt_len, bsz) | |
if self.rope_embeddings: | |
query_states = apply_rotary_pos_emb(query_states, cos, sin) | |
if past_key_value is not None: | |
is_updated = past_key_value.is_updated.get(self.layer_idx) | |
if is_cross_attention: | |
# after the first generated id, we can subsequently re-use all key/value_states from cache | |
past_key_value.is_updated[self.layer_idx] = True | |
past_key_value = past_key_value.cross_attention_cache | |
else: | |
past_key_value = past_key_value.self_attention_cache | |
# use key_value_states if cross attention | |
current_states = key_value_states if key_value_states is not None else hidden_states | |
if is_cross_attention and past_key_value and is_updated: | |
# reuse k,v, cross_attentions | |
key_states = past_key_value.key_cache[self.layer_idx] | |
value_states = past_key_value.value_cache[self.layer_idx] | |
else: | |
key_states = self._shape_key_value(self.k_proj(current_states), -1, bsz) | |
value_states = self._shape_key_value(self.v_proj(current_states), -1, bsz) | |
if not is_cross_attention and self.rope_embeddings: | |
# cached key states already have rope applied - only apply to new state | |
key_states = apply_rotary_pos_emb(key_states, cos, sin) | |
if past_key_value is not None: | |
# save all key/value_states to cache to be re-used for fast auto-regressive generation | |
cache_position = cache_position if not is_cross_attention else None | |
key_states, value_states = past_key_value.update( | |
key_states, value_states, self.layer_idx, {"cache_position": cache_position} | |
) | |
causal_mask = attention_mask | |
if attention_mask is not None: # no matter the length, we just slice it | |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
# repeat k/v heads if n_kv_heads < n_heads | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment | |
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling. | |
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1. | |
is_causal = True if self.is_causal and causal_mask is None and tgt_len > 1 else False | |
# NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask, | |
# but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577 | |
attn_output = torch.nn.functional.scaled_dot_product_attention( | |
query_states, | |
key_states, | |
value_states, | |
attn_mask=causal_mask, | |
dropout_p=self.dropout if self.training else 0.0, | |
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1. | |
is_causal=is_causal, | |
) | |
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2) | |
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be | |
# partitioned across GPUs when using tensor-parallelism. | |
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, None, past_key_value | |
PARLERTTS_ATTENTION_CLASSES = { | |
"eager": ParlerTTSAttention, | |
"sdpa": ParlerTTSSdpaAttention, | |
"flash_attention_2": ParlerTTSFlashAttention2, | |
} | |
class ParlerTTSDecoderLayer(nn.Module): | |
def __init__(self, config: ParlerTTSDecoderConfig, layer_idx: int = None): | |
super().__init__() | |
self.embed_dim = config.hidden_size | |
self.self_attn = PARLERTTS_ATTENTION_CLASSES[config._attn_implementation]( | |
embed_dim=self.embed_dim, | |
num_heads=config.num_attention_heads, | |
num_key_value_heads=config.num_key_value_heads, | |
dropout=config.attention_dropout, | |
is_decoder=True, | |
is_causal=True, | |
bias=False, | |
rope_embeddings=config.rope_embeddings, | |
layer_idx=layer_idx, | |
config=config, | |
) | |
self.dropout = config.dropout | |
self.activation_fn = ACT2FN[config.activation_function] | |
self.activation_dropout = config.activation_dropout | |
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
cross_attn_implementation = config._attn_implementation | |
if config.cross_attention_implementation_strategy == "always_eager": | |
cross_attn_implementation = "eager" | |
elif config.cross_attention_implementation_strategy == "always_sdpa": | |
cross_attn_implementation = "sdpa" | |
self.encoder_attn = PARLERTTS_ATTENTION_CLASSES[cross_attn_implementation]( | |
self.embed_dim, | |
config.num_attention_heads, | |
num_key_value_heads=config.num_cross_attention_key_value_heads, | |
dropout=config.attention_dropout, | |
is_decoder=True, | |
bias=False, | |
rope_embeddings=config.rope_embeddings, | |
layer_idx=layer_idx, | |
config=config, | |
) | |
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) | |
self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=False) | |
self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=False) | |
self.final_layer_norm = nn.LayerNorm(self.embed_dim) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
cos: Optional[torch.LongTensor] = None, | |
sin: Optional[torch.LongTensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
layer_head_mask: Optional[torch.Tensor] = None, | |
cross_attn_layer_head_mask: Optional[torch.Tensor] = None, | |
past_key_value: Optional[EncoderDecoderCache] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = True, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> torch.Tensor: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`): attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.n_positions - 1]`. | |
encoder_hidden_states (`torch.FloatTensor`): | |
cross attention input to the layer of shape `(batch, seq_len, embed_dim)` | |
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size | |
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | |
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size | |
`(encoder_attention_heads,)`. | |
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of | |
size `(decoder_attention_heads,)`. | |
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
hidden_states = self.self_attn_layer_norm(hidden_states) | |
# Self Attention | |
hidden_states, self_attn_weights, present_key_value = self.self_attn( | |
hidden_states=hidden_states, | |
past_key_value=past_key_value, | |
attention_mask=attention_mask, | |
cos=cos, | |
sin=sin, | |
layer_head_mask=layer_head_mask, | |
output_attentions=output_attentions, | |
cache_position=cache_position, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
# Cross-Attention Block | |
cross_attn_weights = None | |
if encoder_hidden_states is not None: | |
residual = hidden_states | |
hidden_states = self.encoder_attn_layer_norm(hidden_states) | |
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( | |
hidden_states=hidden_states, | |
key_value_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
cos=cos, | |
sin=sin, | |
layer_head_mask=cross_attn_layer_head_mask, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
# add cross-attn to positions 1 of present_key_value tuple | |
present_key_value = (present_key_value, cross_attn_present_key_value) | |
# Fully Connected | |
residual = hidden_states | |
hidden_states = self.final_layer_norm(hidden_states) | |
hidden_states = self.activation_fn(self.fc1(hidden_states)) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) | |
hidden_states = self.fc2(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (self_attn_weights, cross_attn_weights) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenPreTrainedModel with Musicgen->ParlerTTS | |
class ParlerTTSPreTrainedModel(PreTrainedModel): | |
""" | |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
models. | |
""" | |
config_class = ParlerTTSDecoderConfig | |
base_model_prefix = "model" | |
supports_gradient_checkpointing = True | |
_supports_flash_attn_2 = True | |
_supports_sdpa = True | |
_no_split_modules = ["ParlerTTSDecoderLayer", "ParlerTTSAttention"] | |
_supports_cache_class = True | |
_supports_static_cache = True | |
def _init_weights(self, module): | |
std = self.config.initializer_factor | |
if isinstance(module, (nn.Linear, nn.Conv1d)): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
MUSICGEN_START_DOCSTRING = r""" | |
The ParlerTTS model was proposed in [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by | |
Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, Alexandre Défossez. It is an | |
encoder decoder transformer trained on the task of conditional music generation | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`ParlerTTSConfig`]): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the | |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
MUSICGEN_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
decoder_input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, target_sequence_length)`, *optional*): | |
Indices of decoder input sequence tokens in the vocabulary, corresponding to the sequence of audio codes. | |
Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes, | |
such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details. | |
[What are decoder input IDs?](../glossary#decoder-input-ids) | |
<Tip warning={true}> | |
The `decoder_input_ids` will automatically be converted from shape `(batch_size * num_codebooks, | |
target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If | |
you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of | |
frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks, | |
target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as | |
`decoder_input_ids`. | |
</Tip> | |
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): | |
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also | |
be used by default. | |
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, | |
1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): | |
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) | |
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of | |
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. | |
TODO: it's passed through enc_to_dec_proj and optionnally we concat the prompt hidden states in certain cases. | |
past_key_values (`EncoderDecoderCache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | |
Pre-computed hidden-states that can be used to speed up auto-regressive (sequential) decoding. There are | |
four sets of pre-computed hidden-states: key and values states in the self-attention blocks (2) and | |
in the cross-attention blocks (2). The `past_key_values` are returned when `use_cache=True` is passed or | |
when `config.use_cache=True` | |
Two formats are allowed: | |
- An [`~cache_utils.EncoderDecoderCache`] instance; | |
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded | |
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be | |
input (see `past_key_values`). This is useful if you want more control over how to convert | |
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. | |
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value | |
of `inputs_embeds`. | |
prompt_input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input prompt sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
prompt_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding prompt token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
prompt_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `prompt_input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `prompt_input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | |
Indices depicting the position of the input sequence tokens in the sequence. It is used to update the cache | |
in the correct position and to infer the complete sequence length. | |
""" | |
MUSICGEN_DECODER_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary, corresponding to the sequence of audio codes. | |
Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes, | |
such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
<Tip warning={true}> | |
The `input_ids` will automatically be converted from shape `(batch_size * num_codebooks, | |
target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If | |
you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of | |
frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks, | |
target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as | |
`input_ids`. | |
</Tip> | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): | |
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of | |
the decoder. | |
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): | |
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values | |
selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
prompt_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): | |
Sequence of prompt hidden-states at the output of the initial embedding layer. Concatenated to the input embeds. | |
prompt_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): | |
Mask to avoid performing cross-attention on padding tokens indices of prompt input_ids. Mask values | |
selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): | |
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing | |
cross-attention on hidden heads. Mask values selected in `[0, 1]`: | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class ParlerTTSDecoder(ParlerTTSPreTrainedModel): | |
""" | |
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`ParlerTTSDecoderLayer`] | |
""" | |
def __init__(self, config: ParlerTTSDecoderConfig): | |
super().__init__(config) | |
self.dropout = config.dropout | |
self.layerdrop = config.layerdrop | |
self.max_target_positions = config.max_position_embeddings | |
self.d_model = config.hidden_size | |
self.num_codebooks = config.num_codebooks | |
self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0 | |
# TODO(YL): actually doesn't need the +1 if initialized correctly. Too late to change now. | |
embed_dim = config.vocab_size + 1 # + 1 for pad token id | |
self.embed_tokens = nn.ModuleList( | |
[nn.Embedding(embed_dim, config.hidden_size) for _ in range(config.num_codebooks)] | |
) | |
self.rope_embeddings = config.rope_embeddings | |
if not config.rope_embeddings: | |
self.embed_positions = ParlerTTSSinusoidalPositionalEmbedding( | |
config.max_position_embeddings, | |
config.hidden_size, | |
) | |
else: | |
self.rotary_emb = ParlerTTSRotaryEmbedding( | |
config.hidden_size // config.num_attention_heads, | |
max_position_embeddings=config.max_position_embeddings, | |
base=config.rope_theta, | |
) | |
self.layers = nn.ModuleList( | |
[ParlerTTSDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | |
) | |
self.layer_norm = nn.LayerNorm(config.hidden_size) | |
self.attn_implementation = config._attn_implementation | |
encoder_attn_implementation = config._attn_implementation | |
if config.cross_attention_implementation_strategy is not None: | |
encoder_attn_implementation = ( | |
"sdpa" if config.cross_attention_implementation_strategy == "always_sdpa" else "eager" | |
) | |
self.encoder_attn_implementation = encoder_attn_implementation | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.LongTensor] = None, | |
prompt_hidden_states: Optional[torch.FloatTensor] = None, | |
prompt_attention_mask: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position=None, | |
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") | |
elif input_ids is not None: | |
# (bsz * codebooks, seq_len) -> (bsz, codebooks, seq_len) | |
input = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1]) | |
bsz, num_codebooks, seq_len = input.shape | |
input_shape = (bsz, seq_len) | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
input = inputs_embeds[:, :, -1:] | |
else: | |
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") | |
if inputs_embeds is None: | |
inputs_embeds = sum([self.embed_tokens[codebook](input[:, codebook]) for codebook in range(num_codebooks)]) | |
prepended_sequence_length = 0 | |
# if prompt_hidden_states, fuse to inputs_embeds and update input shape | |
if prompt_hidden_states is not None: | |
prepended_sequence_length = prompt_hidden_states.shape[-2] | |
inputs_embeds = torch.cat([prompt_hidden_states, inputs_embeds], dim=1) | |
return_legacy_cache = False | |
return_self_attention_cache = False | |
if use_cache or past_key_values is not None: | |
if isinstance(past_key_values, Cache) and not isinstance(past_key_values, EncoderDecoderCache): | |
return_self_attention_cache = True | |
past_key_values = EncoderDecoderCache(past_key_values, DynamicCache()) | |
elif not isinstance(past_key_values, EncoderDecoderCache): | |
return_legacy_cache = True | |
logger.warning_once( | |
"Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.43.0. " | |
"You should pass an instance of `EncoderDecoderCache` instead, e.g. " | |
"`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`." | |
) | |
past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values) | |
past_key_values_length = 0 | |
if cache_position is not None: | |
past_key_values_length = cache_position[0] | |
elif past_key_values is not None: | |
past_key_values_length = past_key_values.get_seq_length() | |
if cache_position is None: | |
cache_position = torch.arange( | |
past_key_values_length, past_key_values_length + input_shape[1] + prepended_sequence_length, device=inputs_embeds.device | |
) | |
if position_ids is None: | |
position_ids = cache_position.unsqueeze(0) | |
# NOTE: 1. As it is, the masked ids from the prompt will still count in the positions embeddings | |
# NOTE: 2. we want to concatenate the prompt attention mask and the decoder attention mask | |
# i.i.f `prompt_cross_attention=False`. ParlerTTSForConditionalGeneration's taking care of setting | |
# `prompt_attention_mask=None` | |
if prompt_attention_mask is not None and attention_mask is not None: | |
attention_mask = torch.cat([prompt_attention_mask, attention_mask], dim=1) | |
elif prompt_attention_mask is not None: | |
logger.warning_once( | |
"`prompt_attention_mask` is specified but `attention_mask` is not. A full `attention_mask` will be created. Make sure this is the intended behaviour." | |
) | |
if past_key_values_length == 0: | |
attention_mask = torch.cat( | |
[ | |
prompt_attention_mask, | |
torch.ones(input_shape, device=self.device, dtype=prompt_attention_mask.dtype), | |
], | |
dim=1, | |
) | |
else: | |
# In the generation case of `prompt_cross_attention=True`, we need to recreate an attention mask from scratch | |
# to be able to prepend the prompt attention mask. | |
# Since we generate token per token, we can recompute the generated length from the information we have. | |
generated_length = past_key_values_length - prompt_attention_mask.shape[1] + 1 | |
attention_mask = torch.cat( | |
[ | |
prompt_attention_mask, | |
torch.ones( | |
(input_shape[0], generated_length), device=self.device, dtype=prompt_attention_mask.dtype | |
), | |
], | |
dim=1, | |
) | |
input_shape = inputs_embeds.size()[:-1] | |
cos, sin = None, None | |
if not self.rope_embeddings: | |
# embed positions | |
# TODO: As it is, the masked ids from the prompt will still count in the positions embeddings | |
# maybe should modify position embeddings | |
positions = self.embed_positions(inputs_embeds, past_key_values_length) | |
hidden_states = inputs_embeds + positions.to(inputs_embeds.device) | |
else: | |
hidden_states = inputs_embeds | |
if position_ids is None: | |
if attention_mask is not None: | |
# masked ids will **not** count in the position embeddings | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
else: | |
position_ids = torch.arange( | |
past_key_values_length, | |
input_shape[1] + past_key_values_length, | |
dtype=torch.long, | |
device=inputs_embeds.device, | |
) | |
position_ids = position_ids.unsqueeze(0) | |
# Some generation methods already pass only the last input ID | |
if position_ids.shape[1] > input_shape[1]: | |
position_ids = position_ids[:, -input_shape[1] :] | |
cos, sin = self.rotary_emb(hidden_states.device.type, position_ids) | |
cos, sin = cos.to(hidden_states.dtype), sin.to(hidden_states.dtype) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
causal_mask = self._update_causal_mask( | |
attention_mask, | |
inputs_embeds, | |
cache_position, | |
past_key_values.self_attention_cache if past_key_values is not None else None, | |
output_attentions, | |
) | |
if encoder_hidden_states is not None and encoder_attention_mask is not None: | |
if self.encoder_attn_implementation == "flash_attention_2": | |
encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None | |
elif self.encoder_attn_implementation == "sdpa" and cross_attn_head_mask is None and not output_attentions: | |
# output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on | |
# the manual implementation that requires a 4D causal mask in all cases. | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa( | |
encoder_attention_mask, | |
inputs_embeds.dtype, | |
tgt_len=input_shape[-1], | |
) | |
else: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
encoder_attention_mask = _prepare_4d_attention_mask( | |
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] | |
) | |
if self.gradient_checkpointing and self.training: | |
if use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None | |
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired | |
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): | |
if attn_mask is not None: | |
if attn_mask.size()[0] != len(self.layers): | |
raise ValueError( | |
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" | |
f" {attn_mask.size()[0]}." | |
) | |
for idx, decoder_layer in enumerate(self.layers): | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
dropout_probability = random.uniform(0, 1) | |
if self.training and (dropout_probability < self.layerdrop): | |
continue | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
decoder_layer.forward, | |
hidden_states, | |
causal_mask, | |
cos, | |
sin, | |
encoder_hidden_states, | |
encoder_attention_mask, | |
head_mask[idx] if head_mask is not None else None, | |
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, | |
None, | |
output_attentions, | |
use_cache, | |
cache_position, | |
) | |
else: | |
layer_outputs = decoder_layer( | |
hidden_states, | |
attention_mask=causal_mask, | |
cos=cos, | |
sin=sin, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
cross_attn_layer_head_mask=( | |
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None | |
), | |
past_key_value=past_key_values if use_cache else None, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
cache_position=cache_position, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
if encoder_hidden_states is not None: | |
all_cross_attentions += (layer_outputs[2],) | |
hidden_states = self.layer_norm(hidden_states) | |
# add hidden states from the last decoder layer | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
next_cache = past_key_values if use_cache else None | |
if return_self_attention_cache: | |
next_cache = past_key_values.self_attention_cache | |
if return_legacy_cache: | |
next_cache = past_key_values.to_legacy_cache() | |
if not return_dict: | |
return tuple( | |
v | |
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] | |
if v is not None | |
) | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=hidden_states, | |
past_key_values=next_cache, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
cross_attentions=all_cross_attentions, | |
) | |
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask | |
def _update_causal_mask( | |
self, | |
attention_mask: torch.Tensor, | |
input_tensor: torch.Tensor, | |
cache_position: torch.Tensor, | |
past_key_values: Cache, | |
output_attentions: bool, | |
): | |
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static | |
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes. | |
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using | |
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114 | |
if self.config._attn_implementation == "flash_attention_2": | |
if attention_mask is not None and 0.0 in attention_mask: | |
return attention_mask | |
return None | |
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in | |
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail | |
# to infer the attention mask. | |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | |
using_static_cache = isinstance(past_key_values, StaticCache) | |
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward | |
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: | |
if AttentionMaskConverter._ignore_causal_mask_sdpa( | |
attention_mask, | |
inputs_embeds=input_tensor, | |
past_key_values_length=past_seen_tokens, | |
is_training=self.training, | |
): | |
return None | |
dtype, device = input_tensor.dtype, input_tensor.device | |
min_dtype = torch.finfo(dtype).min | |
sequence_length = input_tensor.shape[1] | |
if using_static_cache: | |
target_length = past_key_values.get_max_length() | |
else: | |
target_length = ( | |
attention_mask.shape[-1] | |
if isinstance(attention_mask, torch.Tensor) | |
else past_seen_tokens + sequence_length + 1 | |
) | |
if attention_mask is not None and attention_mask.dim() == 4: | |
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing | |
if attention_mask.max() != 0: | |
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`") | |
causal_mask = attention_mask | |
else: | |
causal_mask = torch.full( | |
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device | |
) | |
if sequence_length != 1: | |
causal_mask = torch.triu(causal_mask, diagonal=1) | |
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) | |
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) | |
if attention_mask is not None: | |
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit | |
mask_length = attention_mask.shape[-1] | |
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] | |
padding_mask = padding_mask == 0 | |
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( | |
padding_mask, min_dtype | |
) | |
if ( | |
self.config._attn_implementation == "sdpa" | |
and attention_mask is not None | |
and attention_mask.device.type == "cuda" | |
and not output_attentions | |
): | |
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when | |
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. | |
# Details: https://github.com/pytorch/pytorch/issues/110213 | |
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) | |
return causal_mask | |
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenModel with Musicgen->ParlerTTS | |
class ParlerTTSModel(ParlerTTSPreTrainedModel): | |
def __init__(self, config: ParlerTTSDecoderConfig): | |
super().__init__(config) | |
self.decoder = ParlerTTSDecoder(config) | |
self.config = config | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.decoder.embed_tokens | |
def set_input_embeddings(self, value): | |
self.decoder.embed_tokens = value | |
def get_decoder(self): | |
return self.decoder | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.LongTensor] = None, | |
prompt_hidden_states: Optional[torch.FloatTensor] = None, | |
prompt_attention_mask: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) | |
decoder_outputs = self.decoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
encoder_attention_mask=encoder_attention_mask, | |
encoder_hidden_states=encoder_hidden_states, | |
prompt_hidden_states=prompt_hidden_states, | |
prompt_attention_mask=prompt_attention_mask, | |
head_mask=head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
cache_position=cache_position, | |
) | |
if not return_dict: | |
return decoder_outputs | |
return BaseModelOutputWithPastAndCrossAttentions( | |
last_hidden_state=decoder_outputs.last_hidden_state, | |
past_key_values=decoder_outputs.past_key_values, | |
hidden_states=decoder_outputs.hidden_states, | |
attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
) | |
class ParlerTTSForCausalLM(ParlerTTSPreTrainedModel): | |
def __init__(self, config: ParlerTTSDecoderConfig): | |
super().__init__(config) | |
self.model = ParlerTTSModel(config) | |
self.num_codebooks = config.num_codebooks | |
self.vocab_size = config.vocab_size | |
self.num_codebooks = config.num_codebooks | |
self.use_fused_lm_heads = config.use_fused_lm_heads | |
if self.use_fused_lm_heads: | |
self.lm_heads = nn.Linear(config.hidden_size, config.vocab_size * config.num_codebooks, bias=False) | |
else: | |
self.lm_heads = nn.ModuleList( | |
[nn.Linear(config.hidden_size, config.vocab_size, bias=False) for _ in range(config.num_codebooks)] | |
) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.decoder.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.decoder.embed_tokens = value | |
def get_output_embeddings(self): | |
return self.lm_heads | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_heads = new_embeddings | |
def set_decoder(self, decoder): | |
self.model.decoder = decoder | |
def get_decoder(self): | |
return self.model.decoder | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.LongTensor] = None, | |
prompt_hidden_states: Optional[torch.FloatTensor] = None, | |
prompt_attention_mask: Optional[torch.LongTensor] = None, | |
head_mask: Optional[torch.Tensor] = None, | |
cross_attn_head_mask: Optional[torch.Tensor] = None, | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
loss_reduction: str = "mean", | |
) -> Union[Tuple, ParlerTTSCausalLMOutputWithCrossAttentions]: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length, num_codebooks)`, *optional*): | |
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` | |
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` | |
Returns: | |
""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
outputs = self.model( | |
input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=encoder_attention_mask, | |
prompt_hidden_states=prompt_hidden_states, | |
prompt_attention_mask=prompt_attention_mask, | |
head_mask=head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
cache_position=cache_position, | |
) | |
hidden_states = outputs[0] | |
if self.use_fused_lm_heads: | |
lm_logits = self.lm_heads(hidden_states).view(hidden_states.shape[0], -1, self.num_codebooks, self.vocab_size).transpose(1,2) | |
else: | |
lm_logits = torch.stack([head(hidden_states) for head in self.lm_heads], dim=1) | |
loss = None | |
per_codebook_losses = None | |
if labels is not None: | |
codebook_weights = self.config.codebook_weights | |
# since encoder hidden states have concatenated to hidden states, take the last hidden states corresponding to labels | |
logits = lm_logits[:, :, -labels.shape[1] :] | |
loss_fct = CrossEntropyLoss(reduction=loss_reduction) | |
loss = torch.zeros([], device=self.device) | |
per_codebook_losses = [] | |
# (bsz, vocab_size, seq_len, num_codebooks), (bsz, seq_len, num_codebooks) | |
labels = labels.masked_fill(labels == self.config.bos_token_id, -100) | |
# we use every codebooks token AND one single EOS at the end of each codebooks | |
mask = (input_ids.transpose(1, 2) != self.config.eos_token_id) & ((labels != -100)) | |
# per codebook cross-entropy | |
for codebook in range(self.config.num_codebooks): | |
codebook_logits = logits[:, codebook].contiguous().view(-1, logits.shape[-1]) | |
codebook_mask = mask[..., codebook].contiguous().view(-1) | |
codebook_labels = labels[..., codebook].contiguous().view(-1) | |
codebook_loss = loss_fct(codebook_logits[codebook_mask], codebook_labels[codebook_mask]) | |
per_codebook_losses.append(codebook_loss) | |
if codebook_weights is not None: | |
codebook_loss = codebook_loss*codebook_weights[codebook] | |
loss += codebook_loss | |
if codebook_weights is not None: | |
loss = loss / sum(codebook_weights) | |
else: | |
loss = loss / self.config.num_codebooks | |
# (bsz, num_codebooks, seq_len, vocab_size) -> (bsz * num_codebooks, seq_len, vocab_size) | |
lm_logits = lm_logits.reshape(-1, *lm_logits.shape[2:]) | |
if not return_dict: | |
output = (lm_logits,) + outputs[1:] | |
return ((loss,) + output + (per_codebook_losses, )) if loss is not None else output | |
return ParlerTTSCausalLMOutputWithCrossAttentions( | |
loss=loss, | |
logits=lm_logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
cross_attentions=outputs.cross_attentions, | |
per_codebook_losses=per_codebook_losses, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
attention_mask=None, | |
encoder_hidden_states=None, | |
encoder_attention_mask=None, | |
prompt_hidden_states=None, | |
prompt_attention_mask=None, | |
head_mask=None, | |
cross_attn_head_mask=None, | |
past_key_values=None, | |
use_cache=True, | |
delay_pattern_mask=None, | |
cache_position=None, | |
inputs_embeds=None, | |
**kwargs, | |
): | |
if delay_pattern_mask is None: | |
input_ids, delay_pattern_mask = self.build_delay_pattern_mask( | |
input_ids, | |
bos_token_id=self.generation_config.bos_token_id, | |
pad_token_id=self.generation_config.pad_token_id, | |
max_length=self.generation_config.max_length, | |
) | |
# apply the delay pattern mask | |
input_ids = self.apply_delay_pattern_mask(input_ids, delay_pattern_mask) | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values is not None: | |
input_ids = input_ids[:, -1:] | |
if position_ids is not None: | |
position_ids = position_ids[:, -input_ids.shape[1] :] | |
# we only want to use prompt signal in the 1st generation step but keeping the attention mask | |
prompt_hidden_states = None | |
return { | |
"input_ids": input_ids.contiguous(), # `contiguous()` needed for compilation use cases | |
"attention_mask": attention_mask, | |
"position_ids": position_ids, | |
"encoder_hidden_states": encoder_hidden_states, | |
"encoder_attention_mask": encoder_attention_mask, | |
"prompt_hidden_states": prompt_hidden_states, | |
"prompt_attention_mask": prompt_attention_mask, | |
"head_mask": head_mask, | |
"cross_attn_head_mask": cross_attn_head_mask, | |
"past_key_values": past_key_values, | |
"use_cache": use_cache, | |
"cache_position": cache_position, | |
"inputs_embeds": inputs_embeds, | |
} | |
# Ignore copy | |
def build_delay_pattern_mask( | |
self, input_ids: torch.LongTensor, bos_token_id: int, pad_token_id: int, max_length: int = None | |
): | |
"""Build a delayed pattern mask to the input_ids. Each codebook is offset by the previous codebook by | |
one, giving a delayed pattern mask at the start of sequence and end of sequence. Take the example where there | |
are 4 codebooks and a max sequence length of 8, we have the delayed pattern mask of shape `(codebooks, | |
seq_len)`: | |
- [B, -1, -1, -1, -1, P, P, P] | |
- [B, B, -1, -1, -1, -1, P, P] | |
- [B, B, B, -1, -1, -1, -1, P] | |
- [B, B, B, B, -1, -1, -1, -1] | |
where P is the special padding token id and -1 indicates that the token is valid for prediction. If we include | |
a prompt (decoder input ids), the -1 positions indicate where new tokens should be predicted. Otherwise, the | |
mask is set to the value in the prompt: | |
- [B, a, b, -1, -1, P, P, P] | |
- [B, B, c, d, -1, -1, P, P] | |
- [B, B, B, e, f, -1, -1, P] | |
- [B, B, B, B, g, h, -1, -1] | |
where a-h indicate the input prompt (decoder input ids) that are offset by 1. Now, we only override the -1 | |
tokens in our prediction. | |
""" | |
max_length = max_length if max_length is not None else self.generation_config.max_length | |
return build_delay_pattern_mask(input_ids, bos_token_id, pad_token_id, max_length, self.num_codebooks) | |
def apply_delay_pattern_mask(input_ids, decoder_pad_token_mask): | |
"""Apply a delay pattern mask to the decoder input ids, only preserving predictions where | |
the mask is set to -1, and otherwise setting to the value detailed in the mask.""" | |
return apply_delay_pattern_mask(input_ids, decoder_pad_token_mask) | |
def generate( | |
self, | |
inputs: Optional[torch.Tensor] = None, | |
generation_config: Optional[GenerationConfig] = None, | |
logits_processor: Optional[LogitsProcessorList] = None, | |
stopping_criteria: Optional[StoppingCriteriaList] = None, | |
synced_gpus: Optional[bool] = None, | |
streamer: Optional["BaseStreamer"] = None, | |
**kwargs, | |
): | |
""" | |
Generates sequences of token ids for models with a language modeling head. | |
<Tip warning={true}> | |
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the | |
model's default generation configuration. You can override any `generation_config` by passing the corresponding | |
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. | |
For an overview of generation strategies and code examples, check out the [following | |
guide](./generation_strategies). | |
</Tip> | |
Parameters: | |
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): | |
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the | |
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` | |
should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of | |
`input_ids`, `input_values`, `input_features`, or `pixel_values`. | |
generation_config (`~generation.GenerationConfig`, *optional*): | |
The generation configuration to be used as base parametrization for the generation call. `**kwargs` | |
passed to generate matching the attributes of `generation_config` will override them. If | |
`generation_config` is not provided, the default will be used, which had the following loading | |
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model | |
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s | |
default values, whose documentation should be checked to parameterize generation. | |
logits_processor (`LogitsProcessorList`, *optional*): | |
Custom logits processors that complement the default logits processors built from arguments and | |
generation config. If a logit processor is passed that is already created with the arguments or a | |
generation config an error is thrown. This feature is intended for advanced users. | |
stopping_criteria (`StoppingCriteriaList`, *optional*): | |
Custom stopping criteria that complement the default stopping criteria built from arguments and a | |
generation config. If a stopping criteria is passed that is already created with the arguments or a | |
generation config an error is thrown. This feature is intended for advanced users. | |
synced_gpus (`bool`, *optional*, defaults to `False`): | |
Whether to continue running the while loop until max_length (needed for ZeRO stage 3) | |
streamer (`BaseStreamer`, *optional*): | |
Streamer object that will be used to stream the generated sequences. Generated tokens are passed | |
through `streamer.put(token_ids)` and the streamer is responsible for any further processing. | |
kwargs (`Dict[str, Any]`, *optional*): | |
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be | |
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder | |
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. | |
Return: | |
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` | |
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. | |
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible | |
[`~utils.ModelOutput`] types are: | |
- [`~generation.GenerateDecoderOnlyOutput`], | |
- [`~generation.GenerateBeamDecoderOnlyOutput`] | |
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible | |
[`~utils.ModelOutput`] types are: | |
- [`~generation.GenerateEncoderDecoderOutput`], | |
- [`~generation.GenerateBeamEncoderDecoderOutput`] | |
""" | |
# 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects | |
if generation_config is None: | |
generation_config = self.generation_config | |
generation_config = copy.deepcopy(generation_config) | |
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs | |
generation_config.validate() | |
self._validate_model_kwargs(model_kwargs.copy()) | |
# 2. Set generation parameters if not already defined | |
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() | |
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() | |
requires_attention_mask = "encoder_outputs" not in model_kwargs | |
kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None | |
# 3. Define model inputs` | |
input_ids, model_input_name, model_kwargs = self._prepare_model_inputs( | |
inputs, generation_config.bos_token_id, model_kwargs | |
) | |
batch_size = input_ids.shape[0] // self.num_codebooks | |
self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=input_ids.device) | |
# 4. Define other model kwargs | |
model_kwargs["use_cache"] = generation_config.use_cache | |
if model_kwargs.get("attention_mask", None) is None and requires_attention_mask: | |
self._prepare_attention_mask_for_generation( | |
input_ids, generation_config.pad_token_id, generation_config.eos_token_id | |
) | |
# 5. Prepare `max_length` depending on other stopping criteria. | |
input_ids_length = input_ids.shape[-1] | |
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None | |
has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None | |
generation_config = self._prepare_generated_length( | |
generation_config=generation_config, | |
has_default_max_length=has_default_max_length, | |
has_default_min_length=has_default_min_length, | |
model_input_name=model_input_name, | |
inputs_tensor=input_ids, | |
input_ids_length=input_ids_length, | |
) | |
# 6. Prepare `input_ids` which will be used for auto-regressive generation | |
# Build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Parler-TTS) | |
input_ids, delay_pattern_mask = self.build_delay_pattern_mask( | |
input_ids, | |
pad_token_id=generation_config._decoder_start_token_tensor, | |
max_length=generation_config.max_length, | |
) | |
if streamer is not None: | |
streamer.put(input_ids.cpu()) | |
# stash the delay mask so that we don't have to recompute it in each forward pass | |
model_kwargs["delay_pattern_mask"] = delay_pattern_mask | |
# 7. determine generation mode | |
is_greedy_gen_mode = ( | |
(generation_config.num_beams == 1) | |
and (generation_config.num_beam_groups == 1) | |
and generation_config.do_sample is False | |
) | |
is_sample_gen_mode = ( | |
(generation_config.num_beams == 1) | |
and (generation_config.num_beam_groups == 1) | |
and generation_config.do_sample is True | |
) | |
# 8. prepare distribution pre_processing samplers | |
logits_processor = self._get_logits_processor( | |
generation_config=generation_config, | |
input_ids_seq_length=input_ids_length, | |
encoder_input_ids=input_ids, | |
prefix_allowed_tokens_fn=None, | |
logits_processor=logits_processor, | |
device=input_ids.device, | |
) | |
# 9. prepare stopping criteria | |
stopping_criteria = self._get_stopping_criteria( | |
generation_config=generation_config, stopping_criteria=stopping_criteria | |
) | |
if is_greedy_gen_mode: | |
if generation_config.num_return_sequences > 1: | |
raise ValueError( | |
"num_return_sequences has to be 1 when doing greedy search, " | |
f"but is {generation_config.num_return_sequences}." | |
) | |
# 10. run greedy search | |
outputs = self._sample( | |
input_ids, | |
logits_processor=logits_processor, | |
stopping_criteria=stopping_criteria, | |
generation_config=generation_config, | |
synced_gpus=synced_gpus, | |
streamer=streamer, | |
**model_kwargs, | |
) | |
elif is_sample_gen_mode: | |
# 10. prepare logits warper | |
logits_warper = self._get_logits_warper(generation_config, device=input_ids.device) | |
# expand input_ids with `num_return_sequences` additional sequences per batch | |
input_ids, model_kwargs = self._expand_inputs_for_generation( | |
input_ids=input_ids, | |
expand_size=generation_config.num_return_sequences, | |
**model_kwargs, | |
) | |
# 11. run sample | |
outputs = self._sample( | |
input_ids, | |
logits_processor=logits_processor, | |
logits_warper=logits_warper, | |
stopping_criteria=stopping_criteria, | |
generation_config=generation_config, | |
synced_gpus=synced_gpus, | |
streamer=streamer, | |
**model_kwargs, | |
) | |
else: | |
raise ValueError( | |
"Got incompatible mode for generation, should be one of greedy or sampling. " | |
"Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`." | |
) | |
if generation_config.return_dict_in_generate: | |
output_ids = outputs.sequences | |
else: | |
output_ids = outputs | |
# apply the pattern mask to the final ids | |
output_ids = self.apply_delay_pattern_mask(output_ids, model_kwargs["delay_pattern_mask"]) | |
# revert the pattern delay mask by filtering the eos and bos token ids from the delay pattern mask | |
_, mask = self.build_delay_pattern_mask( | |
input_ids, | |
bos_token_id=generation_config.bos_token_id, | |
pad_token_id=generation_config.pad_token_id, | |
max_length=output_ids.shape[1], | |
) | |
mask = (mask != generation_config._bos_token_tensor) & (mask != generation_config._pad_token_tensor) | |
output_ids = output_ids[mask].reshape(batch_size, self.num_codebooks, -1) | |
if generation_config.return_dict_in_generate: | |
outputs.sequences = output_ids | |
return outputs | |
else: | |
return output_ids | |
class ParlerTTSForConditionalGeneration(PreTrainedModel): | |
config_class = ParlerTTSConfig | |
base_model_prefix = "encoder_decoder" | |
main_input_name = "input_ids" | |
supports_gradient_checkpointing = True | |
_supports_flash_attn_2 = True | |
_supports_sdpa = True | |
_supports_cache_class = True | |
_supports_static_cache = True | |
def __init__( | |
self, | |
config: Optional[ParlerTTSConfig] = None, | |
text_encoder: Optional[PreTrainedModel] = None, | |
audio_encoder: Optional[PreTrainedModel] = None, | |
decoder: Optional[ParlerTTSForCausalLM] = None, | |
): | |
if config is None and (text_encoder is None or audio_encoder is None or decoder is None): | |
raise ValueError( | |
"Either a configuration has to be provided, or all three of text encoder, audio encoder and Parler-TTS decoder." | |
) | |
if config is None: | |
config = ParlerTTSConfig.from_sub_models_config(text_encoder.config, audio_encoder.config, decoder.config) | |
else: | |
if not isinstance(config, self.config_class): | |
raise ValueError(f"Config: {config} has to be of type {self.config_class}") | |
if config.decoder.cross_attention_hidden_size is not None: | |
if config.decoder.cross_attention_hidden_size != config.text_encoder.hidden_size: | |
raise ValueError( | |
"If `cross_attention_hidden_size` is specified in the Parler-TTS decoder's configuration, it has to be equal" | |
f" to the text encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" | |
f" `config.decoder.cross_attention_hidden_size` and {config.text_encoder.hidden_size} for" | |
" `config.text_encoder.hidden_size`." | |
) | |
# initialize with config | |
super().__init__(config) | |
if text_encoder is None: | |
from transformers.models.auto.modeling_auto import AutoModelForTextEncoding | |
text_encoder = AutoModelForTextEncoding.from_config(config.text_encoder) | |
if audio_encoder is None: | |
from transformers.models.auto.modeling_auto import AutoModel | |
audio_encoder = AutoModel.from_config(config.audio_encoder) | |
if decoder is None: | |
decoder = ParlerTTSForCausalLM._from_config(config.decoder) | |
self.text_encoder = text_encoder | |
self.audio_encoder = audio_encoder | |
self.decoder = decoder | |
if self.text_encoder.config.to_dict() != self.config.text_encoder.to_dict(): | |
logger.warning( | |
f"Config of the text_encoder: {self.text_encoder.__class__} is overwritten by shared text_encoder config:" | |
f" {self.config.text_encoder}" | |
) | |
if self.audio_encoder.config.to_dict() != self.config.audio_encoder.to_dict(): | |
logger.warning( | |
f"Config of the audio_encoder: {self.audio_encoder.__class__} is overwritten by shared audio_encoder config:" | |
f" {self.config.audio_encoder}" | |
) | |
if self.decoder.config.to_dict() != self.config.decoder.to_dict(): | |
logger.warning( | |
f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" | |
f" {self.config.decoder}" | |
) | |
# make sure that the individual model's config refers to the shared config | |
# so that the updates to the config will be synced | |
self.config.text_encoder._attn_implementation = self.text_encoder.config._attn_implementation | |
self.config.audio_encoder._attn_implementation = self.audio_encoder.config._attn_implementation | |
self.config.decoder._attn_implementation = self.decoder.config._attn_implementation | |
self.text_encoder.config = self.config.text_encoder | |
self.audio_encoder.config = self.config.audio_encoder | |
self.decoder.config = self.config.decoder | |
# text encoder outputs might need to be projected to different dimension for decoder | |
if ( | |
self.text_encoder.config.hidden_size != self.decoder.config.hidden_size | |
and self.decoder.config.cross_attention_hidden_size is None | |
): | |
self.enc_to_dec_proj = nn.Linear(self.text_encoder.config.hidden_size, self.decoder.config.hidden_size) | |
# prompt embeddings | |
self.embed_prompts = nn.Embedding(config.vocab_size, self.decoder.config.hidden_size) | |
self.prompt_cross_attention = config.prompt_cross_attention | |
if config.prompt_cross_attention: | |
self.embed_positions = ParlerTTSSinusoidalPositionalEmbedding( | |
config.decoder.max_position_embeddings, | |
config.decoder.hidden_size, | |
) | |
if self.text_encoder.get_output_embeddings() is not None: | |
raise ValueError( | |
f"The encoder {self.text_encoder} should not have a LM Head. Please use a model without and LM Head" | |
) | |
decoder_signature = set(inspect.signature(self.decoder.forward).parameters.keys()) | |
if "encoder_hidden_states" not in decoder_signature: | |
raise ValueError( | |
"The selected decoder is not prepared for the encoder hidden states to be passed. Please see the " | |
"following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350" | |
) | |
audio_encoder_signature = set(inspect.signature(self.audio_encoder.decode).parameters.keys()) | |
self.use_audio_scales = "audio_scales" in audio_encoder_signature | |
self.use_4dim_audio_codes = False | |
audio_type = audio_encoder.config.model_type | |
if audio_type in {"encodec", "dac_on_the_hub"} or (audio_type == "dac" and not is_dac_integrated_to_transformers): | |
self.use_4dim_audio_codes = True | |
# Initialize projection and embedding layers and tie text encoder and decoder weights if set accordingly | |
self.post_init() | |
def _init_weights(self, module): | |
std = self.decoder.config.initializer_factor | |
if isinstance(module, (nn.Linear, nn.Conv1d)): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
def tie_weights(self): | |
# tie text encoder & decoder if needed | |
if self.config.tie_encoder_decoder: | |
# tie text encoder and decoder base model | |
decoder_base_model_prefix = self.decoder.base_model_prefix | |
self._tie_encoder_decoder_weights( | |
self.text_encoder, self.decoder._modules[decoder_base_model_prefix], self.decoder.base_model_prefix | |
) | |
def get_audio_encoder(self): | |
return self.audio_encoder | |
def get_text_encoder(self): | |
return self.text_encoder | |
def get_encoder(self): | |
# get the text encoder to compute the encoder hidden-states for generation | |
return self.get_text_encoder() | |
def get_decoder(self): | |
return self.decoder | |
def get_input_embeddings(self): | |
return self.text_encoder.get_input_embeddings() | |
def get_output_embeddings(self): | |
return self.decoder.get_output_embeddings() | |
def set_output_embeddings(self, new_embeddings): | |
return self.decoder.set_output_embeddings(new_embeddings) | |
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): | |
r""" | |
Example: | |
```python | |
>>> from parler_tts import ParlerTTSForConditionalGeneration | |
>>> model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1") | |
```""" | |
# At the moment fast initialization is not supported for composite models | |
if kwargs.get("_fast_init", False): | |
logger.warning( | |
"Fast initialization is currently not supported for ParlerTTSForConditionalGeneration. " | |
"Falling back to slow initialization..." | |
) | |
kwargs["_fast_init"] = False | |
return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) | |
def from_sub_models_pretrained( | |
cls, | |
text_encoder_pretrained_model_name_or_path: str = None, | |
audio_encoder_pretrained_model_name_or_path: str = None, | |
decoder_pretrained_model_name_or_path: str = None, | |
*model_args, | |
**kwargs, | |
) -> PreTrainedModel: | |
r""" | |
Instantiate a text encoder, an audio encoder, and a Parler-TTS decoder from one, two or three base classes of the | |
library from pretrained model checkpoints. | |
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train | |
the model, you need to first set it back in training mode with `model.train()`. | |
Params: | |
text_encoder_pretrained_model_name_or_path (`str`, *optional*): | |
Information necessary to initiate the text encoder. Can be either: | |
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. | |
Valid model ids can be located at the root-level, like `t5-base`, or namespaced under a user or | |
organization name, like `google/flan-t5-base. | |
- A path to a *directory* containing model weights saved using | |
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. | |
audio_encoder_pretrained_model_name_or_path (`str`, *optional*): | |
Information necessary to initiate the audio encoder. Can be either: | |
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. | |
Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a | |
user or organization name, like `facebook/encodec_24khz`. | |
- A path to a *directory* containing model weights saved using | |
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. | |
decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): | |
Information necessary to initiate the decoder. Can be either: | |
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. | |
Valid model ids can be located at the root-level, like `gpt2`, or namespaced under a user or | |
organization name, like `parler-tts/parler-tts-mini-v1`. | |
- A path to a *directory* containing model weights saved using | |
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. | |
model_args (remaining positional arguments, *optional*): | |
All remaining positional arguments will be passed to the underlying model's `__init__` method. | |
kwargs (remaining dictionary of keyword arguments, *optional*): | |
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., | |
`output_attentions=True`). | |
- To update the text encoder configuration, use the prefix *text_encoder_* for each configuration | |
parameter. | |
- To update the audio encoder configuration, use the prefix *audio_encoder_* for each configuration | |
parameter. | |
- To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. | |
- To update the parent model configuration, do not use a prefix for each configuration parameter. | |
Behaves differently depending on whether a `config` is provided or automatically loaded. | |
Example: | |
```python | |
>>> from parler_tts import ParlerTTSForConditionalGeneration | |
>>> # initialize a parler_tts model from a t5 text encoder, encodec audio encoder, and parler_tts decoder | |
>>> model = ParlerTTSForConditionalGeneration.from_sub_models_pretrained( | |
... text_encoder_pretrained_model_name_or_path="t5-base", | |
... audio_encoder_pretrained_model_name_or_path="facebook/encodec_24khz", | |
... decoder_pretrained_model_name_or_path="parler-tts/parler-tts-mini-v1", | |
... ) | |
>>> # saving model after fine-tuning | |
>>> model.save_pretrained("./parler_tts-ft") | |
>>> # load fine-tuned model | |
>>> model = ParlerTTSForConditionalGeneration.from_pretrained("./parler_tts-ft") | |
```""" | |
kwargs_text_encoder = { | |
argument[len("text_encoder_") :]: value | |
for argument, value in kwargs.items() | |
if argument.startswith("text_encoder_") | |
} | |
kwargs_audio_encoder = { | |
argument[len("audio_encoder_") :]: value | |
for argument, value in kwargs.items() | |
if argument.startswith("audio_encoder_") | |
} | |
kwargs_decoder = { | |
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") | |
} | |
# remove text encoder, audio encoder and decoder kwargs from kwargs | |
for key in kwargs_text_encoder.keys(): | |
del kwargs["text_encoder_" + key] | |
for key in kwargs_audio_encoder.keys(): | |
del kwargs["audio_encoder_" + key] | |
for key in kwargs_decoder.keys(): | |
del kwargs["decoder_" + key] | |
# Load and initialize the encoder and decoder | |
# The distinction between encoder and decoder at the model level is made | |
# by the value of the flag `is_decoder` that we need to set correctly. | |
text_encoder = kwargs_text_encoder.pop("model", None) | |
if text_encoder is None: | |
if text_encoder_pretrained_model_name_or_path is None: | |
raise ValueError( | |
"If `text_encoder_model` is not defined as an argument, a `text_encoder_pretrained_model_name_or_path` has " | |
"to be defined." | |
) | |
if "config" not in kwargs_text_encoder: | |
encoder_config, kwargs_text_encoder = AutoConfig.from_pretrained( | |
text_encoder_pretrained_model_name_or_path, **kwargs_text_encoder, return_unused_kwargs=True | |
) | |
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: | |
logger.info( | |
f"Initializing {text_encoder_pretrained_model_name_or_path} as a text_encoder model " | |
"from a decoder model. Cross-attention and casual mask are disabled." | |
) | |
encoder_config.is_decoder = False | |
encoder_config.add_cross_attention = False | |
kwargs_text_encoder["config"] = encoder_config | |
text_encoder = AutoModelForTextEncoding.from_pretrained( | |
text_encoder_pretrained_model_name_or_path, *model_args, **kwargs_text_encoder | |
) | |
audio_encoder = kwargs_audio_encoder.pop("model", None) | |
if audio_encoder is None: | |
if audio_encoder_pretrained_model_name_or_path is None: | |
raise ValueError( | |
"If `audio_encoder_model` is not defined as an argument, an `audio_encoder_pretrained_model_name_or_path` has " | |
"to be defined." | |
) | |
if "config" not in kwargs_audio_encoder: | |
encoder_config, kwargs_audio_encoder = AutoConfig.from_pretrained( | |
audio_encoder_pretrained_model_name_or_path, **kwargs_audio_encoder, return_unused_kwargs=True | |
) | |
if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: | |
logger.info( | |
f"Initializing {audio_encoder_pretrained_model_name_or_path} as an audio_encoder model " | |
"from a decoder model. Cross-attention and casual mask are disabled." | |
) | |
encoder_config.is_decoder = False | |
encoder_config.add_cross_attention = False | |
kwargs_audio_encoder["config"] = encoder_config | |
audio_encoder = AutoModel.from_pretrained( | |
audio_encoder_pretrained_model_name_or_path, *model_args, **kwargs_audio_encoder | |
) | |
decoder = kwargs_decoder.pop("model", None) | |
if decoder is None: | |
if decoder_pretrained_model_name_or_path is None: | |
raise ValueError( | |
"If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " | |
"to be defined." | |
) | |
if "config" not in kwargs_decoder: | |
decoder_config, kwargs_decoder = ParlerTTSDecoderConfig.from_pretrained( | |
decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True | |
) | |
if isinstance(decoder_config, ParlerTTSConfig): | |
decoder_config = decoder_config.decoder | |
if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: | |
logger.info( | |
f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" | |
f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" | |
f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." | |
) | |
decoder_config.is_decoder = True | |
decoder_config.add_cross_attention = True | |
kwargs_decoder["config"] = decoder_config | |
if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: | |
logger.warning( | |
f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " | |
f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " | |
"make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " | |
"passed to `.from_sub_models_pretrained(...)` are set to `True` or do not pass a " | |
"`decoder_config` to `.from_sub_models_pretrained(...)`" | |
) | |
decoder = ParlerTTSForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) | |
# instantiate config with corresponding kwargs | |
config = ParlerTTSConfig.from_sub_models_config( | |
text_encoder.config, audio_encoder.config, decoder.config, **kwargs | |
) | |
return cls(text_encoder=text_encoder, audio_encoder=audio_encoder, decoder=decoder, config=config) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.BoolTensor] = None, | |
input_values: Optional[torch.FloatTensor] = None, | |
padding_mask: Optional[torch.BoolTensor] = None, | |
decoder_input_ids: Optional[torch.LongTensor] = None, | |
decoder_attention_mask: Optional[torch.BoolTensor] = None, | |
encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, | |
past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, | |
prompt_input_ids: Optional[torch.FloatTensor] = None, | |
prompt_attention_mask: Optional[torch.LongTensor] = None, | |
prompt_hidden_states: Optional[torch.FloatTensor] = None, | |
decoder_position_ids: Optional[torch.LongTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
loss_reduction: str = "mean", | |
**kwargs, | |
) -> Union[Tuple, ParlerTTSSeq2SeqLMOutput]: | |
r""" | |
Returns: | |
Examples: | |
```python | |
>>> from transformers import AutoProcessor, ParlerTTSForConditionalGeneration | |
>>> import torch | |
>>> processor = AutoProcessor.from_pretrained("parler-tts/parler-tts-mini-v1") | |
>>> model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1") | |
>>> inputs = processor( | |
... text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"], | |
... padding=True, | |
... return_tensors="pt", | |
... ) | |
>>> pad_token_id = model.generation_config.pad_token_id | |
>>> decoder_input_ids = ( | |
... torch.ones((inputs.input_ids.shape[0] * model.decoder.num_codebooks, 1), dtype=torch.long) | |
... * pad_token_id | |
... ) | |
>>> logits = model(**inputs, decoder_input_ids=decoder_input_ids).logits | |
>>> logits.shape # (bsz * num_codebooks, tgt_len, vocab_size) | |
torch.Size([8, 1, 2048]) | |
```""" | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
kwargs_text_encoder = { | |
argument[len("text_encoder_")]: value | |
for argument, value in kwargs.items() | |
if argument.startswith("text_encoder_") | |
} | |
kwargs_audio_encoder = { | |
argument[len("audio_encoder_")]: value | |
for argument, value in kwargs.items() | |
if argument.startswith("audio_encoder_") | |
} | |
kwargs_decoder = { | |
argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") | |
} | |
if prompt_hidden_states is None: | |
if prompt_input_ids is not None: | |
prompt_hidden_states = self.embed_prompts(prompt_input_ids) | |
if encoder_outputs is None: | |
encoder_outputs = self.text_encoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
**kwargs_text_encoder, | |
) | |
encoder_hidden_states = encoder_outputs[0] | |
# optionally project encoder_hidden_states | |
if ( | |
self.text_encoder.config.hidden_size != self.decoder.config.hidden_size | |
and self.decoder.config.cross_attention_hidden_size is None | |
): | |
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) | |
if attention_mask is not None: | |
encoder_hidden_states = encoder_hidden_states * attention_mask[..., None] | |
if prompt_hidden_states is not None and self.prompt_cross_attention: | |
# add sinusoidal positional embedding | |
positions = self.embed_positions(prompt_hidden_states, 0) | |
prompt_hidden_states = prompt_hidden_states + positions.to(prompt_hidden_states.device) | |
if prompt_attention_mask is not None and attention_mask is None: | |
attention_mask = torch.ones( | |
encoder_hidden_states.shape[:2], device=self.device, dtype=prompt_attention_mask.dtype | |
) | |
elif attention_mask is not None and prompt_attention_mask is None: | |
prompt_attention_mask = torch.ones( | |
prompt_hidden_states.shape[:2], device=self.device, dtype=attention_mask.dtype | |
) | |
# concatenate text description states with prompt description states | |
encoder_hidden_states = torch.cat([encoder_hidden_states, prompt_hidden_states], dim=1) | |
if prompt_attention_mask is not None: | |
attention_mask = torch.cat([attention_mask, prompt_attention_mask], dim=1) | |
prompt_hidden_states = None | |
prompt_attention_mask = None | |
encoder_outputs["last_hidden_state"] = encoder_hidden_states | |
elif isinstance(encoder_outputs, tuple): | |
encoder_outputs = BaseModelOutput(*encoder_outputs) | |
encoder_hidden_states = encoder_outputs.last_hidden_state | |
if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): | |
decoder_input_ids = shift_tokens_right( | |
labels, self.config.pad_token_id, self.config.decoder_start_token_id | |
).transpose(1, 2) | |
elif decoder_input_ids is None and decoder_inputs_embeds is None: | |
audio_encoder_outputs = self.audio_encoder( | |
input_values=input_values, | |
padding_mask=padding_mask, | |
**kwargs_audio_encoder, | |
) | |
audio_codes = audio_encoder_outputs.audio_codes | |
frames, bsz, codebooks, seq_len = audio_codes.shape | |
if frames != 1: | |
raise ValueError( | |
f"Expected 1 frame in the audio code outputs, got {frames} frames. Ensure chunking is " | |
"disabled by setting `chunk_length=None` in the audio encoder." | |
) | |
if self.config.decoder.audio_channels == 2 and audio_codes.shape[2] == self.decoder.num_codebooks // 2: | |
# mono input through encodec that we convert to stereo | |
audio_codes = audio_codes.repeat_interleave(2, dim=2) | |
decoder_input_ids = audio_codes[0, ...].reshape(bsz * self.decoder.num_codebooks, seq_len) | |
# Decode | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
position_ids=decoder_position_ids, | |
encoder_hidden_states=encoder_hidden_states, | |
encoder_attention_mask=attention_mask, | |
prompt_hidden_states=prompt_hidden_states, | |
prompt_attention_mask=prompt_attention_mask, | |
inputs_embeds=decoder_inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
use_cache=use_cache, | |
past_key_values=past_key_values, | |
return_dict=return_dict, | |
labels=labels, | |
cache_position=cache_position, | |
loss_reduction=loss_reduction, | |
**kwargs_decoder, | |
) | |
if not return_dict: | |
return decoder_outputs + (encoder_hidden_states,) | |
return ParlerTTSSeq2SeqLMOutput( | |
loss=decoder_outputs.loss, | |
logits=decoder_outputs.logits, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
per_codebook_losses=decoder_outputs.per_codebook_losses, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
decoder_input_ids, | |
past_key_values=None, | |
attention_mask=None, | |
head_mask=None, | |
decoder_attention_mask=None, | |
decoder_head_mask=None, | |
prompt_hidden_states=None, | |
prompt_attention_mask=None, | |
cross_attn_head_mask=None, | |
use_cache=None, | |
encoder_outputs=None, | |
decoder_delay_pattern_mask=None, | |
cache_position=None, | |
inputs_embeds=None, | |
**kwargs, | |
): | |
if decoder_delay_pattern_mask is None: | |
decoder_input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask( | |
decoder_input_ids, | |
bos_token_id=self.generation_config.bos_token_id, | |
pad_token_id=self.generation_config.pad_token_id, | |
max_length=self.generation_config.max_length, | |
) | |
# apply the delay pattern mask | |
decoder_input_ids = self.decoder.apply_delay_pattern_mask(decoder_input_ids, decoder_delay_pattern_mask) | |
past_length = 0 | |
if past_key_values is not None: | |
if isinstance(past_key_values, EncoderDecoderCache): | |
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() | |
if past_key_values.get_seq_length() > 0: | |
# we only want to use prompt signal in the 1st generation step | |
prompt_hidden_states = None | |
else: | |
past_length = past_key_values[0][0].shape[2] | |
# we only want to use prompt signal in the 1st generation step | |
prompt_hidden_states = None | |
# Some generation methods already pass only the last input ID | |
if decoder_input_ids.shape[1] > past_length: | |
remove_prefix_length = past_length | |
else: | |
# Default to old behavior: keep only final ID | |
remove_prefix_length = decoder_input_ids.shape[1] - 1 | |
decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] | |
if cache_position is None: | |
cache_position = torch.arange( | |
past_length, past_length + decoder_input_ids.shape[1], device=decoder_input_ids.device | |
) | |
elif use_cache: | |
cur_len = decoder_input_ids.shape[1] | |
if prompt_hidden_states is not None and not self.prompt_cross_attention: | |
# meaning we are in 1st generation step and prompt_hidden_state will be prepended | |
cur_len += prompt_hidden_states.shape[1] | |
cache_position = cache_position[-cur_len:] | |
if decoder_attention_mask is None and prompt_attention_mask is not None: | |
input = decoder_input_ids.reshape(-1, self.decoder.num_codebooks, decoder_input_ids.shape[-1]) | |
bsz, _, seq_len = input.shape | |
input_shape = (bsz, seq_len) | |
past_key_values_length = 0 | |
if cache_position is not None: | |
past_key_values_length = cache_position[0] | |
elif past_key_values is not None: | |
past_key_values_length = past_key_values.get_seq_length() | |
logger.warning_once( | |
"`prompt_attention_mask` is specified but `attention_mask` is not. A full `attention_mask` will be created. Make sure this is the intended behaviour." | |
) | |
if past_key_values is None or ( | |
isinstance(past_key_values, EncoderDecoderCache) and past_key_values.get_seq_length() == 0 | |
): | |
decoder_attention_mask = torch.ones(input_shape, device=self.device, dtype=decoder_input_ids.dtype) | |
elif prompt_attention_mask is not None: | |
# In the generation case of `prompt_cross_attention=True`, we need to recreate an attention mask from scratch | |
# to be able to prepend the prompt attention mask. | |
# Since we generate token per token, we can recompute the generated length from the information we have. | |
generated_length = past_key_values_length - prompt_attention_mask.shape[1] + 1 | |
decoder_attention_mask = torch.ones( | |
(input_shape[0], generated_length), device=self.device, dtype=prompt_attention_mask.dtype | |
) | |
return { | |
"input_ids": None, # encoder_outputs is defined. input_ids not needed | |
"encoder_outputs": encoder_outputs, | |
"past_key_values": past_key_values, | |
"decoder_input_ids": decoder_input_ids.contiguous(), | |
"attention_mask": attention_mask, | |
"decoder_attention_mask": decoder_attention_mask, | |
"head_mask": head_mask, | |
"decoder_head_mask": decoder_head_mask, | |
"cross_attn_head_mask": cross_attn_head_mask, | |
"prompt_hidden_states": prompt_hidden_states, | |
"prompt_attention_mask": prompt_attention_mask, | |
"use_cache": use_cache, | |
"cache_position": cache_position, | |
"inputs_embeds": inputs_embeds, | |
} | |
def _prepare_decoder_input_ids_for_generation( | |
self, | |
batch_size: int, | |
model_input_name: str, | |
model_kwargs: Dict[str, torch.Tensor], | |
decoder_start_token_id: int = None, | |
bos_token_id: int = None, | |
device: torch.device = None, | |
) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]: | |
"""Prepares `decoder_input_ids` for generation with encoder-decoder models""" | |
# 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming, | |
# we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input. | |
if model_kwargs is not None and "decoder_input_ids" in model_kwargs: | |
decoder_input_ids = model_kwargs.pop("decoder_input_ids") | |
elif "input_ids" in model_kwargs and model_input_name != "input_ids": | |
decoder_input_ids = model_kwargs.pop("input_ids") | |
else: | |
decoder_input_ids = None | |
# 2. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that. | |
decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id) | |
if device is None: | |
device = self.device | |
decoder_input_ids_start = ( | |
torch.ones((batch_size * self.decoder.num_codebooks, 1), dtype=torch.long, device=device) | |
* decoder_start_token_id | |
) | |
# no user input -> use decoder_start_token_id as decoder_input_ids | |
if decoder_input_ids is None: | |
decoder_input_ids = decoder_input_ids_start | |
# user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust | |
# decoder_attention_mask if provided) | |
elif (decoder_input_ids[..., 0] != decoder_start_token_id).all().item(): | |
decoder_input_ids = torch.cat([decoder_input_ids_start, decoder_input_ids], dim=-1) | |
if "decoder_attention_mask" in model_kwargs: | |
decoder_attention_mask = model_kwargs["decoder_attention_mask"] | |
decoder_attention_mask = torch.cat( | |
(torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask), | |
dim=-1, | |
) | |
model_kwargs["decoder_attention_mask"] = decoder_attention_mask | |
if not self.prompt_cross_attention: | |
prompt_hidden_states = model_kwargs["prompt_hidden_states"] | |
num_codebooks = self.decoder.num_codebooks | |
input = decoder_input_ids.reshape(-1, num_codebooks, decoder_input_ids.shape[-1]) | |
inputs_embeds = sum( | |
[ | |
self.decoder.model.decoder.embed_tokens[codebook](input[:, codebook]) | |
for codebook in range(num_codebooks) | |
] | |
) | |
inputs_embeds = torch.cat([prompt_hidden_states, inputs_embeds], dim=1) | |
model_kwargs["inputs_embeds"] = inputs_embeds | |
return decoder_input_ids, model_kwargs | |
def _prepare_text_encoder_kwargs_for_generation( | |
self, | |
inputs_tensor: torch.Tensor, | |
model_kwargs, | |
model_input_name: Optional[str], | |
generation_config: GenerationConfig, | |
) -> Dict[str, Any]: | |
# 1. get text encoder | |
encoder = self.get_text_encoder() | |
# Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device | |
# as the inputs. | |
if hasattr(encoder, "_hf_hook"): | |
encoder._hf_hook.io_same_device = True | |
# 2. Prepare encoder args and encoder kwargs from model kwargs. | |
irrelevant_prefix = ["decoder_", "cross_attn", "prompt_", "use_cache", "labels"] | |
encoder_kwargs = { | |
argument: value | |
for argument, value in model_kwargs.items() | |
if not any(argument.startswith(p) for p in irrelevant_prefix) | |
} | |
encoder_signature = set(inspect.signature(encoder.forward).parameters) | |
encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature | |
if not encoder_accepts_wildcard: | |
encoder_kwargs = { | |
argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature | |
} | |
encoder_kwargs["output_attentions"] = generation_config.output_attentions | |
encoder_kwargs["output_hidden_states"] = generation_config.output_hidden_states | |
# 3. make sure that encoder returns `ModelOutput` | |
model_input_name = model_input_name if model_input_name is not None else self.text_encoder.main_input_name | |
encoder_kwargs["return_dict"] = True | |
encoder_kwargs[model_input_name] = inputs_tensor | |
last_hidden_state = encoder(**encoder_kwargs).last_hidden_state | |
# we optionnally project last_hidden_state to avoid recomputing every time | |
encoder_hidden_states = last_hidden_state | |
if ( | |
self.text_encoder.config.hidden_size != self.decoder.config.hidden_size | |
and self.decoder.config.cross_attention_hidden_size is None | |
): | |
encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) | |
if model_kwargs["attention_mask"] is not None: | |
encoder_hidden_states = encoder_hidden_states * model_kwargs["attention_mask"][..., None] | |
model_kwargs["encoder_outputs"] = BaseModelOutput(last_hidden_state=encoder_hidden_states) | |
return model_kwargs | |
def _prepare_prompt_kwargs_for_generation(self, prompt_input_ids, model_kwargs): | |
prompt_hidden_states = self.embed_prompts(prompt_input_ids) | |
if self.prompt_cross_attention: | |
# add sinusoidal positional embedding | |
positions = self.embed_positions(prompt_hidden_states, 0) | |
prompt_hidden_states = prompt_hidden_states + positions.to(prompt_hidden_states.device) | |
attention_mask = model_kwargs.get("attention_mask", None) | |
prompt_attention_mask = model_kwargs.get("prompt_attention_mask", None) | |
encoder_hidden_states = model_kwargs["encoder_outputs"].last_hidden_state | |
if prompt_attention_mask is not None and attention_mask is None: | |
attention_mask = torch.ones( | |
encoder_hidden_states.shape[:2], device=self.device, dtype=prompt_attention_mask.dtype | |
) | |
elif attention_mask is not None and prompt_attention_mask is None: | |
prompt_attention_mask = torch.ones( | |
prompt_hidden_states.shape[:2], device=self.device, dtype=attention_mask.dtype | |
) | |
# concatenate text description states with prompt description states | |
encoder_hidden_states = torch.cat([encoder_hidden_states, prompt_hidden_states], dim=1) | |
if prompt_attention_mask is not None: | |
attention_mask = torch.cat([attention_mask, prompt_attention_mask], dim=1) | |
model_kwargs["encoder_outputs"].last_hidden_state = encoder_hidden_states | |
model_kwargs["attention_mask"] = attention_mask | |
# in this case, since we already concatenated the prompt hidden states and attention mask, we don't need them anymore. | |
model_kwargs["prompt_hidden_states"] = None | |
model_kwargs["prompt_attention_mask"] = None | |
else: | |
model_kwargs["prompt_hidden_states"] = prompt_hidden_states | |
# we're keeping the prompt attention mask because it has to be prepended to the decoder attention mask on the fly | |
return model_kwargs | |
def _prepare_audio_encoder_kwargs_for_generation( | |
self, input_values, model_kwargs, model_input_name: Optional[str] = None | |
): | |
# 1. get audio encoder | |
encoder = self.get_audio_encoder() | |
# Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device | |
# as the inputs. | |
if hasattr(encoder, "_hf_hook"): | |
encoder._hf_hook.io_same_device = True | |
# 2. Prepare encoder args and encoder kwargs from model kwargs. | |
irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"] | |
encoder_kwargs = { | |
argument: value | |
for argument, value in model_kwargs.items() | |
if not any(argument.startswith(p) for p in irrelevant_prefix) | |
} | |
encoder_signature = set(inspect.signature(encoder.forward).parameters) | |
encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature | |
if not encoder_accepts_wildcard: | |
encoder_kwargs = { | |
argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature | |
} | |
# 3. make sure that encoder returns `ModelOutput` | |
model_input_name = model_input_name if model_input_name is not None else self.audio_encoder.main_input_name | |
encoder_kwargs["return_dict"] = True | |
if "num_quantizers" in encoder_signature: | |
encoder_kwargs["num_quantizers"] = self.config.decoder.num_codebooks | |
elif "num_codebooks" in encoder_signature: | |
encoder_kwargs["num_codebooks"] = self.config.decoder.num_codebooks | |
elif "n_quantizers" in encoder_signature: | |
encoder_kwargs["n_quantizers"] = self.config.decoder.num_codebooks | |
encoder_kwargs[model_input_name] = input_values | |
audio_encoder_outputs = encoder.encode(**encoder_kwargs) | |
audio_codes = audio_encoder_outputs.audio_codes | |
audio_scales = audio_encoder_outputs.get("audio_scales") | |
if audio_codes.ndim == 3: | |
bsz, codebooks, seq_len = audio_codes.shape | |
decoder_input_ids = audio_codes.reshape(bsz * self.decoder.num_codebooks, seq_len) | |
else: | |
frames, bsz, codebooks, seq_len = audio_codes.shape | |
if frames != 1: | |
raise ValueError( | |
f"Expected 1 frame in the audio code outputs, got {frames} frames. Ensure chunking is " | |
"disabled by setting `chunk_length=None` in the audio encoder." | |
) | |
decoder_input_ids = audio_codes[0, ...].reshape(bsz * self.decoder.num_codebooks, seq_len) | |
model_kwargs["decoder_input_ids"] = decoder_input_ids | |
if audio_scales is not None: | |
model_kwargs["audio_scales"] = audio_scales | |
return model_kwargs | |
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): | |
return shift_tokens_right( | |
labels, self.config.decoder.pad_token_id, self.config.decoder.bos_token_id | |
).transpose(1, 2) | |
def resize_token_embeddings(self, *args, **kwargs): | |
raise NotImplementedError( | |
"Resizing the embedding layers via the EncoderDecoderModel directly is not supported. Please use the" | |
" respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or" | |
" model.decoder.resize_token_embeddings(...))" | |
) | |
def _maybe_initialize_input_ids_for_generation( | |
self, | |
inputs: Optional[torch.Tensor] = None, | |
bos_token_id: Optional[int] = None, | |
model_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
) -> torch.LongTensor: | |
"""Initializes input ids for generation, if necessary.""" | |
if inputs is not None: | |
return inputs | |
encoder_outputs = model_kwargs.get("encoder_outputs") | |
if encoder_outputs is not None: | |
# make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding | |
shape = encoder_outputs[0].size()[:-1] | |
return torch.ones(shape, dtype=torch.long, device=self.device) * -100 | |
if bos_token_id is None: | |
raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.") | |
# If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with | |
# soft-prompting or in multimodal implementations built on top of decoder-only language models. | |
batch_size = 1 | |
for value in model_kwargs.values(): | |
if isinstance(value, torch.Tensor): | |
batch_size = value.shape[0] | |
break | |
return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id | |
def _get_decoder_start_token_id( | |
self, decoder_start_token_id: Union[int, List[int]] = None, bos_token_id: int = None | |
) -> int: | |
decoder_start_token_id = ( | |
decoder_start_token_id | |
if decoder_start_token_id is not None | |
else self.generation_config.decoder_start_token_id | |
) | |
bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id | |
if decoder_start_token_id is not None: | |
return decoder_start_token_id | |
elif bos_token_id is not None: | |
return bos_token_id | |
raise ValueError( | |
"`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation." | |
) | |
def _get_cache(self, cache_implementation: str, max_batch_size: int, max_cache_len: int, model_kwargs) -> Cache: | |
""" | |
Sets a cache for `generate`, that will persist across calls. A new cache will only be initialized a | |
new `generate` call requires a larger cache. | |
Returns the resulting cache object. | |
""" | |
cache_cls: Cache = NEED_SETUP_CACHE_CLASSES_MAPPING[cache_implementation] | |
requires_cross_attention_cache = ( | |
self.config.is_encoder_decoder or model_kwargs.get("encoder_outputs") is not None | |
) | |
if hasattr(self, "_cache"): | |
cache_to_check = self._cache.self_attention_cache if requires_cross_attention_cache else self._cache | |
if cache_implementation == "sliding_window": | |
max_cache_len = min(self.config.sliding_window, max_cache_len) | |
need_new_cache = ( | |
not hasattr(self, "_cache") | |
or (not isinstance(cache_to_check, cache_cls)) | |
or cache_to_check.max_batch_size != max_batch_size | |
or cache_to_check.max_cache_len < max_cache_len | |
) | |
if requires_cross_attention_cache and hasattr(self, "_cache"): | |
need_new_cache = ( | |
need_new_cache | |
or self._cache.cross_attention_cache.max_cache_len != model_kwargs["encoder_outputs"][0].shape[1] | |
) | |
if need_new_cache: | |
if hasattr(self.config, "_pre_quantization_dtype"): | |
cache_dtype = self.config._pre_quantization_dtype | |
else: | |
cache_dtype = self.dtype | |
cache_kwargs = { | |
"config": self.config.decoder, | |
"max_batch_size": max_batch_size, | |
"max_cache_len": max_cache_len, | |
"device": self.device, | |
"dtype": cache_dtype, | |
} | |
self._cache = cache_cls(**cache_kwargs) | |
if requires_cross_attention_cache: | |
encoder_kwargs = cache_kwargs.copy() | |
encoder_kwargs["max_cache_len"] = model_kwargs["encoder_outputs"][0].shape[1] | |
config_cross_attention_cache = copy.deepcopy(self.config.decoder) | |
config_cross_attention_cache.update( | |
{"num_key_value_heads": self.config.decoder.num_cross_attention_key_value_heads} | |
) | |
encoder_kwargs["config"] = config_cross_attention_cache | |
self._cache = EncoderDecoderCache(self._cache, cache_cls(**encoder_kwargs)) | |
else: | |
self._cache.reset() | |
return self._cache | |
def freeze_encoders(self, freeze_text_encoder=True): | |
if freeze_text_encoder: | |
for param in self.text_encoder.parameters(): | |
param.requires_grad = False | |
self.text_encoder._requires_grad = False | |
for param in self.audio_encoder.parameters(): | |
param.requires_grad = False | |
self.audio_encoder._requires_grad = False | |
def generate( | |
self, | |
inputs: Optional[torch.Tensor] = None, | |
generation_config: Optional[GenerationConfig] = None, | |
logits_processor: Optional[LogitsProcessorList] = None, | |
stopping_criteria: Optional[StoppingCriteriaList] = None, | |
synced_gpus: Optional[bool] = None, | |
streamer: Optional["BaseStreamer"] = None, | |
**kwargs, | |
): | |
""" | |
Generates sequences of token ids for models with a language modeling head. | |
<Tip warning={true}> | |
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the | |
model's default generation configuration. You can override any `generation_config` by passing the corresponding | |
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. | |
For an overview of generation strategies and code examples, check out the [following | |
guide](./generation_strategies). | |
</Tip> | |
Parameters: | |
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): | |
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the | |
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` | |
should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of | |
`input_ids`, `input_values`, `input_features`, or `pixel_values`. | |
generation_config (`~generation.GenerationConfig`, *optional*): | |
The generation configuration to be used as base parametrization for the generation call. `**kwargs` | |
passed to generate matching the attributes of `generation_config` will override them. If | |
`generation_config` is not provided, the default will be used, which had the following loading | |
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model | |
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s | |
default values, whose documentation should be checked to parameterize generation. | |
logits_processor (`LogitsProcessorList`, *optional*): | |
Custom logits processors that complement the default logits processors built from arguments and | |
generation config. If a logit processor is passed that is already created with the arguments or a | |
generation config an error is thrown. This feature is intended for advanced users. | |
stopping_criteria (`StoppingCriteriaList`, *optional*): | |
Custom stopping criteria that complement the default stopping criteria built from arguments and a | |
generation config. If a stopping criteria is passed that is already created with the arguments or a | |
generation config an error is thrown. This feature is intended for advanced users. | |
synced_gpus (`bool`, *optional*, defaults to `False`): | |
Whether to continue running the while loop until max_length (needed for ZeRO stage 3) | |
streamer (`BaseStreamer`, *optional*): | |
Streamer object that will be used to stream the generated sequences. Generated tokens are passed | |
through `streamer.put(token_ids)` and the streamer is responsible for any further processing. | |
kwargs (`Dict[str, Any]`, *optional*): | |
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be | |
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder | |
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. | |
Return: | |
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` | |
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. | |
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible | |
[`~utils.ModelOutput`] types are: | |
- [`~generation.GenerateDecoderOnlyOutput`], | |
- [`~generation.GenerateBeamDecoderOnlyOutput`] | |
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible | |
[`~utils.ModelOutput`] types are: | |
- [`~generation.GenerateEncoderDecoderOutput`], | |
- [`~generation.GenerateBeamEncoderDecoderOutput`] | |
""" | |
# 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects | |
if generation_config is None: | |
generation_config = self.generation_config | |
generation_config = copy.deepcopy(generation_config) | |
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs | |
generation_config.validate() | |
self._validate_model_kwargs(model_kwargs.copy()) | |
if model_kwargs.get("encoder_outputs") is not None and type(model_kwargs["encoder_outputs"]) == tuple: | |
# wrap the unconditional outputs as a BaseModelOutput for compatibility with the rest of generate | |
model_kwargs["encoder_outputs"] = BaseModelOutput(last_hidden_state=model_kwargs["encoder_outputs"][0]) | |
# 2. Set generation parameters if not already defined | |
requires_attention_mask = "encoder_outputs" not in model_kwargs | |
kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None | |
# 3. Define model inputs | |
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs( | |
inputs, generation_config.bos_token_id, model_kwargs | |
) | |
batch_size = inputs_tensor.shape[0] | |
self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=inputs_tensor.device) | |
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList([ParlerTTSLogitsProcessor(generation_config.eos_token_id, self.decoder.num_codebooks, batch_size, inputs_tensor.device)]) | |
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() | |
# 4. Define other model kwargs | |
model_kwargs["use_cache"] = generation_config.use_cache | |
if model_kwargs.get("attention_mask", None) is None and requires_attention_mask: | |
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation( | |
inputs_tensor, generation_config._pad_token_tensor, generation_config._eos_token_tensor | |
) | |
if "encoder_outputs" not in model_kwargs: | |
# encoder_outputs are created and added to `model_kwargs` | |
model_kwargs = self._prepare_text_encoder_kwargs_for_generation( | |
inputs_tensor, model_kwargs, model_input_name, generation_config | |
) | |
if "prompt_hidden_states" not in model_kwargs and "prompt_input_ids" in model_kwargs: | |
# `prompt_hidden_states` are created and added to `model_kwargs` | |
model_kwargs = self._prepare_prompt_kwargs_for_generation( | |
model_kwargs["prompt_input_ids"], | |
model_kwargs, | |
) | |
if "decoder_input_ids" not in model_kwargs and "input_values" in model_kwargs: | |
model_kwargs = self._prepare_audio_encoder_kwargs_for_generation( | |
model_kwargs["input_values"], | |
model_kwargs, | |
) | |
# 5. Prepare `input_ids` which will be used for auto-regressive generation | |
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation( | |
batch_size=batch_size, | |
model_input_name=model_input_name, | |
model_kwargs=model_kwargs, | |
decoder_start_token_id=generation_config._decoder_start_token_tensor, | |
bos_token_id=generation_config._bos_token_tensor, | |
device=inputs_tensor.device, | |
) | |
# 6. Prepare `max_length` depending on other stopping criteria. | |
input_ids_length = input_ids.shape[-1] | |
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None | |
has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None | |
generation_config = self._prepare_generated_length( | |
generation_config=generation_config, | |
has_default_max_length=has_default_max_length, | |
has_default_min_length=has_default_min_length, | |
model_input_name=model_input_name, | |
inputs_tensor=inputs_tensor, | |
input_ids_length=input_ids_length, | |
) | |
if generation_config.cache_implementation is not None and model_kwargs.get("past_key_values") is not None: | |
raise ValueError( | |
"Passing both `cache_implementation` (used to initialize certain caches) and `past_key_values` (a " | |
"Cache object) is unsupported. Please use only one of the two." | |
) | |
elif generation_config.cache_implementation is not None: | |
if generation_config.cache_implementation in NEED_SETUP_CACHE_CLASSES_MAPPING: | |
if generation_config.cache_implementation == "static" and not self._supports_static_cache: | |
raise ValueError( | |
"This model does not support `cache_implementation='static'`. Please check the following " | |
"issue: https://github.com/huggingface/transformers/issues/28981" | |
) | |
if not self.prompt_cross_attention: | |
# when we prepend prompt_hidden_state to inputs_embeds, max_cache_len needs to be actualised | |
# generation_config.max_length has already been increased by input_ids_length which is | |
# already counted in input_embeds_seq_length so we remove it | |
input_embeds_seq_length = model_kwargs["inputs_embeds"].shape[1] | |
max_cache_len = generation_config.max_length + input_embeds_seq_length - input_ids_length | |
else: | |
max_cache_len = self.generation_config.max_length | |
model_kwargs["past_key_values"] = self._get_cache( | |
generation_config.cache_implementation, | |
getattr(generation_config, "num_beams", 1) * batch_size, | |
max_cache_len, | |
model_kwargs, | |
) | |
elif generation_config.cache_implementation == "quantized": | |
raise ValueError( | |
"This model does not support the quantized cache. If you want your model to support quantized " | |
"cache, please open an issue on the Parler-TTS repository https://github.com/huggingface/parler-tts" | |
) | |
# Use DynamicCache() instance by default. This will avoid back and forth from legacy format that | |
# keeps copying the cache thus using much more memory | |
elif generation_config.cache_implementation is None and self._supports_default_dynamic_cache(): | |
past = model_kwargs.get("past_key_values", None) | |
requires_cross_attention_cache = ( | |
self.config.is_encoder_decoder or model_kwargs.get("encoder_outputs") is not None | |
) | |
if past is None: | |
model_kwargs["past_key_values"] = ( | |
DynamicCache() | |
if not requires_cross_attention_cache | |
else EncoderDecoderCache(DynamicCache(), DynamicCache()) | |
) | |
elif isinstance(past, tuple): | |
model_kwargs["past_key_values"] = ( | |
DynamicCache.from_legacy_cache(past) | |
if not requires_cross_attention_cache | |
else EncoderDecoderCache.from_legacy_cache(past) | |
) | |
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Parler-TTS) | |
delayed_input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask( | |
input_ids, | |
bos_token_id=generation_config._bos_token_tensor, | |
pad_token_id=generation_config._pad_token_tensor, | |
max_length=generation_config.max_length, | |
) | |
# stash the delay mask so that we don't have to recompute in each forward pass | |
model_kwargs["decoder_delay_pattern_mask"] = decoder_delay_pattern_mask | |
# input_ids are ready to be placed on the streamer (if used) | |
if streamer is not None: | |
streamer.put(delayed_input_ids.cpu()) | |
# 7. determine generation mode | |
generation_mode = generation_config.get_generation_mode() | |
# 8. prepare distribution pre_processing samplers | |
logits_processor = self._get_logits_processor( | |
generation_config=generation_config, | |
input_ids_seq_length=input_ids_length, | |
encoder_input_ids=inputs_tensor, | |
prefix_allowed_tokens_fn=None, | |
logits_processor=logits_processor, | |
device=delayed_input_ids.device, | |
) | |
# 9. prepare stopping criteria | |
stopping_criteria = self._get_stopping_criteria( | |
generation_config=generation_config, stopping_criteria=stopping_criteria | |
) | |
if generation_mode in (GenerationMode.SAMPLE, GenerationMode.GREEDY_SEARCH): | |
# expand input_ids with `num_return_sequences` additional sequences per batch | |
delayed_input_ids, model_kwargs = self._expand_inputs_for_generation( | |
input_ids=delayed_input_ids, | |
expand_size=generation_config.num_return_sequences, | |
is_encoder_decoder=self.config.is_encoder_decoder, | |
**model_kwargs, | |
) | |
# 10. run sample | |
outputs = self._sample( | |
delayed_input_ids, | |
logits_processor=logits_processor, | |
stopping_criteria=stopping_criteria, | |
generation_config=generation_config, | |
synced_gpus=synced_gpus, | |
streamer=streamer, | |
**model_kwargs, | |
) | |
else: | |
raise ValueError( | |
"Got incompatible mode for generation, should be one of greedy or sampling. " | |
"Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`." | |
) | |
if generation_config.return_dict_in_generate: | |
output_ids = outputs.sequences | |
else: | |
output_ids = outputs | |
# Apply the pattern mask to the final ids | |
output_ids = self.decoder.apply_delay_pattern_mask(output_ids, model_kwargs["decoder_delay_pattern_mask"]) | |
# Revert the pattern delay mask by filtering the eos and bos token ids from the delay pattern mask | |
_, mask = self.decoder.build_delay_pattern_mask( | |
input_ids, | |
bos_token_id=generation_config.bos_token_id, | |
pad_token_id=generation_config.pad_token_id, | |
max_length=output_ids.shape[1], | |
) | |
mask = (mask != generation_config.bos_token_id) & (mask != generation_config.pad_token_id) | |
output_ids = output_ids[mask].reshape(batch_size, self.decoder.num_codebooks, -1) | |
# append the frame dimension back to the audio codes | |
output_ids = output_ids[None, ...] | |
audio_decode_kwargs = {} | |
if self.use_audio_scales: | |
audio_scales = model_kwargs.get("audio_scales") | |
if audio_scales is None: | |
audio_scales = [None] * batch_size | |
audio_decode_kwargs["audio_scales"] = audio_scales | |
if not self.use_4dim_audio_codes: | |
# remove chunk dim | |
output_ids = output_ids.squeeze(0) | |
decode_sequentially = ( | |
generation_config.bos_token_id in output_ids | |
or generation_config.pad_token_id in output_ids | |
or generation_config.eos_token_id in output_ids | |
) | |
if not decode_sequentially: | |
output_values = self.audio_encoder.decode( | |
audio_codes=output_ids, | |
**audio_decode_kwargs, | |
).audio_values.squeeze(1) | |
output_lengths = [audio.shape[0] for audio in output_values] | |
else: | |
output_values = [] | |
for sample_id in range(batch_size): | |
sample = output_ids[:, sample_id] if self.use_4dim_audio_codes else output_ids[sample_id] | |
sample_mask = (sample >= self.audio_encoder.config.codebook_size) | |
sample_mask = (sample_mask.sum(dim=(0, 1)) == 0) if self.use_4dim_audio_codes else (sample_mask.sum(dim=0) == 0) | |
single_audio_decode_kwargs = {} | |
if self.use_audio_scales: | |
single_audio_decode_kwargs["audio_scales"] = [audio_decode_kwargs["audio_scales"][sample_id]] | |
if sample_mask.sum() > 0: | |
sample = sample[:, :, sample_mask] if self.use_4dim_audio_codes else sample[:, sample_mask] | |
sample = self.audio_encoder.decode(audio_codes=sample[None, ...], **single_audio_decode_kwargs).audio_values | |
sample = sample if sample.ndim == 3 else sample.unsqueeze(0) | |
output_values.append(sample.transpose(0, 2)) | |
else: | |
output_values.append(torch.zeros((1, 1, 1)).to(self.device)) | |
output_lengths = [audio.shape[0] for audio in output_values] | |
output_values = ( | |
torch.nn.utils.rnn.pad_sequence(output_values, batch_first=True, padding_value=0) | |
.squeeze(-1) | |
.squeeze(-1) | |
) | |
if generation_config.return_dict_in_generate: | |
outputs["audios_length"] = output_lengths | |
outputs.sequences = output_values | |
return outputs | |
else: | |
return output_values | |
def _get_initial_cache_position(self, input_ids, model_kwargs): | |
"""Calculates `cache_position` for the pre-fill stage based on `input_ids` and optionally past length""" | |
# `torch.compile`-friendly `torch.arange` from a shape -- the lines below are equivalent to `torch.arange` | |
if "inputs_embeds" in model_kwargs: | |
cache_position = torch.ones_like(model_kwargs["inputs_embeds"][0, :, 0], dtype=torch.int64).cumsum(0) - 1 | |
else: | |
cache_position = torch.ones_like(input_ids[0, :], dtype=torch.int64).cumsum(0) - 1 | |
past_length = 0 | |
if model_kwargs.get("past_key_values") is not None: | |
cache = model_kwargs["past_key_values"] | |
past_length = 0 | |
if not isinstance(cache, Cache): | |
past_length = cache[0][0].shape[2] | |
elif hasattr(cache, "get_seq_length") and cache.get_seq_length() is not None: | |
past_length = cache.get_seq_length() | |
# TODO(joao): this is not torch.compile-friendly, find a work-around. If the cache is not empty, | |
# end-to-end compilation will yield bad results because `cache_position` will be incorrect. | |
if not is_torchdynamo_compiling(): | |
cache_position = cache_position[past_length:] | |
model_kwargs["cache_position"] = cache_position | |
return model_kwargs | |