File size: 186,932 Bytes
195bb33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch ParlerTTS model."""
import copy
import inspect
import math
import random
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union, List

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from transformers import AutoConfig, AutoModel, AutoModelForTextEncoding
from transformers.activations import ACT2FN
from transformers.cache_utils import (
    Cache,
    DynamicCache,
    EncoderDecoderCache,
    SlidingWindowCache,
    StaticCache,
)
from transformers.generation.configuration_utils import GenerationConfig, GenerationMode
from transformers.generation.logits_process import LogitsProcessorList
from transformers.generation.stopping_criteria import StoppingCriteriaList
from transformers.modeling_attn_mask_utils import (
    AttentionMaskConverter,
    _prepare_4d_attention_mask,
    _prepare_4d_attention_mask_for_sdpa,
)
from transformers.modeling_outputs import (
    BaseModelOutput,
    BaseModelOutputWithPastAndCrossAttentions,
    CausalLMOutputWithCrossAttentions,
    ModelOutput,
    Seq2SeqLMOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
    is_torchdynamo_compiling,
)
from transformers.utils.import_utils import is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10

from .configuration_parler_tts import ParlerTTSConfig, ParlerTTSDecoderConfig
from .dac_wrapper import DACConfig, DACModel
from .logits_processors import ParlerTTSLogitsProcessor

from importlib.metadata import version
from packaging.version import Version

is_dac_integrated_to_transformers = Version(version("transformers")) > Version("4.44.2dev")
if not is_dac_integrated_to_transformers:
    AutoConfig.register("dac", DACConfig)
else:
    AutoConfig.register("dac_on_the_hub", DACConfig)

AutoModel.register(DACConfig, DACModel)

if TYPE_CHECKING:
    from transformers.generation.streamers import BaseStreamer

logger = logging.get_logger(__name__)


if is_flash_attn_2_available():
    from flash_attn import flash_attn_func, flash_attn_varlen_func
    from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa
else:
    logger.warn("Flash attention 2 is not installed")

_CONFIG_FOR_DOC = "ParlerTTSConfig"
_CHECKPOINT_FOR_DOC = "parler-tts/parler-tts-mini-v1"

MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "parler-tts/parler-tts-mini-v1",
    # See all ParlerTTS models at https://huggingface.co/models?filter=parler_tts
]


NEED_SETUP_CACHE_CLASSES_MAPPING = {"static": StaticCache, "sliding_window": SlidingWindowCache}



@dataclass
class ParlerTTSSeq2SeqLMOutput(ModelOutput):
    """
    Base class for sequence-to-sequence language models outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Language modeling loss.
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
        decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
        decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
        cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
            weighted average in the cross-attention heads.
        encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder of the model.
        encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
        encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
            self-attention heads.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    encoder_last_hidden_state: Optional[torch.FloatTensor] = None
    encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    per_codebook_losses: Optional[List[torch.FloatTensor]] = None

@dataclass
class ParlerTTSCausalLMOutputWithCrossAttentions(ModelOutput):
    """
    Base class for causal language model (or autoregressive) outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Language modeling loss (for next-token prediction).
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Cross attentions weights after the attention softmax, used to compute the weighted average in the
            cross-attention heads.
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `torch.FloatTensor` tuples of length `config.n_layers`, with each tuple containing the cached key,
            value states of the self-attention and the cross-attention layers if model is used in encoder-decoder
            setting. Only relevant if `config.is_decoder = True`.

            Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
            `past_key_values` input) to speed up sequential decoding.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
    per_codebook_losses: Optional[List[torch.FloatTensor]] = None

def apply_delay_pattern_mask(input_ids, decoder_pad_token_mask):
    """Apply a delay pattern mask to the decoder input ids, only preserving predictions where
    the mask is set to -1, and otherwise setting to the value detailed in the mask."""
    seq_len = input_ids.shape[-1]
    decoder_pad_token_mask = decoder_pad_token_mask[..., :seq_len]
    input_ids = torch.where(decoder_pad_token_mask == -1, input_ids, decoder_pad_token_mask)
    return input_ids


def build_delay_pattern_mask(
    input_ids: torch.LongTensor, bos_token_id: int, pad_token_id: int, max_length: int, num_codebooks: int
):
    """Build a delayed pattern mask to the input_ids. Each codebook is offset by the previous codebook by
    one, giving a delayed pattern mask at the start of sequence and end of sequence. Take the example where there
    are 4 codebooks and a max sequence length of 8, we have the delayed pattern mask of shape `(codebooks,
    seq_len)`:
    - [B, -1, -1, -1, -1, P, P, P]
    - [B, B, -1, -1, -1, -1, P, P]
    - [B, B, B, -1, -1, -1, -1, P]
    - [B, B, B, B, -1, -1, -1, -1]
    where P is the special padding token id and -1 indicates that the token is valid for prediction. If we include
    a prompt (decoder input ids), the -1 positions indicate where new tokens should be predicted. Otherwise, the
    mask is set to the value in the prompt:
    - [B, a, b, -1, -1, P, P, P]
    - [B, B, c, d, -1, -1, P, P]
    - [B, B, B, e, f, -1, -1, P]
    - [B, B, B, B, g, h, -1, -1]
    where a-h indicate the input prompt (decoder input ids) that are offset by 1. Now, we only override the -1
    tokens in our prediction.
    """
    # (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len)
    input_ids = input_ids.reshape(-1, num_codebooks, input_ids.shape[-1])
    bsz, num_codebooks, seq_len = input_ids.shape

    input_ids_shifted = torch.ones((bsz, num_codebooks, max_length), dtype=torch.long, device=input_ids.device) * -1

    # we only apply the mask if we have a large enough seq len - otherwise we return as is
    if max_length < 2 * num_codebooks - 1:
        return input_ids.reshape(bsz * num_codebooks, -1), input_ids_shifted.reshape(bsz * num_codebooks, -1)

    # fill the shifted ids with the prompt entries, offset by the codebook idx
    for codebook in range(num_codebooks):
        # mono channel - loop over the codebooks one-by-one
        input_ids_shifted[:, codebook, codebook : seq_len + codebook] = input_ids[:, codebook]

    # construct a pattern mask that indicates the positions of padding tokens for each codebook
    # first fill the upper triangular part (the EOS padding)
    eos_delay_pattern = torch.triu(
        torch.ones((num_codebooks, max_length), dtype=torch.bool), diagonal=max_length - num_codebooks + 1
    )
    # then fill the lower triangular part (the BOS padding)
    bos_delay_pattern = torch.tril(torch.ones((num_codebooks, max_length), dtype=torch.bool))

    bos_mask = ~(bos_delay_pattern).to(input_ids.device)
    eos_mask = ~(eos_delay_pattern).to(input_ids.device)
    mask = ~(bos_delay_pattern + eos_delay_pattern).to(input_ids.device)
    input_ids = mask * input_ids_shifted + ~bos_mask * bos_token_id + ~eos_mask * pad_token_id

    # find the first position to start generating - this is the first place we have the -1 token
    # and will always be in the first codebook (since it has no codebook offset)
    first_codebook_ids = input_ids[:, 0, :]
    start_ids = (first_codebook_ids == -1).nonzero()[:, 1]
    if len(start_ids) > 0:
        first_start_id = min(start_ids)
    else:
        # we have no tokens that need to be filled - return entire matrix of input ids
        first_start_id = seq_len

    # (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len)
    pattern_mask = input_ids.reshape(bsz * num_codebooks, -1)
    input_ids = input_ids[..., :first_start_id].reshape(bsz * num_codebooks, -1)
    return input_ids, pattern_mask


# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


@dataclass
class ParlerTTSUnconditionalInput(ModelOutput):
    """
    Args:
        encoder_outputs  (`Tuple[torch.FloatTensor]` of length 1, with tensor shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the text encoder model.
        attention_mask (`torch.LongTensor`)  of shape `(batch_size, sequence_length)`, *optional*):
            Encoder attention mask to avoid performing attention on padding token indices. Mask values selected in `[0,
            1]`: 1 for tokens that are **not masked**, 0 for tokens that are **masked**.
    """

    encoder_outputs: Tuple[torch.FloatTensor] = None
    attention_mask: torch.LongTensor = None


# Copied from transformers.models.encoder_decoder.modeling_encoder_decoder.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
    """
    Shift input ids one token to the right.
    """
    shifted_input_ids = input_ids.new_zeros(input_ids.shape)
    shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
    if decoder_start_token_id is None:
        raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.")
    shifted_input_ids[:, 0] = decoder_start_token_id

    if pad_token_id is None:
        raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.")
    # replace possible -100 values in labels by `pad_token_id`
    shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)

    return shifted_input_ids


# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenSinusoidalPositionalEmbedding with Musicgen->ParlerTTS
class ParlerTTSSinusoidalPositionalEmbedding(nn.Module):
    """This module produces sinusoidal positional embeddings of any length."""

    def __init__(self, num_positions: int, embedding_dim: int):
        super().__init__()
        self.embedding_dim = embedding_dim
        self.make_weights(num_positions, embedding_dim)

    def make_weights(self, num_embeddings: int, embedding_dim: int):
        emb_weights = self.get_embedding(num_embeddings, embedding_dim)
        if hasattr(self, "weights"):
            # in forward put the weights on the correct dtype and device of the param
            emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)

        self.weights = nn.Parameter(emb_weights)
        self.weights.requires_grad = False
        self.weights.detach_()

    @staticmethod
    def get_embedding(num_embeddings: int, embedding_dim: int):
        """
        Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the
        description in Section 3.5 of "Attention Is All You Need".
        """
        half_dim = embedding_dim // 2
        emb = math.log(10000) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
        emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
        emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=1).view(num_embeddings, -1)
        if embedding_dim % 2 == 1:
            # zero pad
            emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
        return emb.to(torch.get_default_dtype())

    @torch.no_grad()
    def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
        bsz, seq_len, _ = input_ids.size()
        # Create the position ids from the input token ids.
        position_ids = torch.arange(seq_len, device=input_ids.device) + past_key_values_length
        # expand embeddings if needed
        if seq_len > self.weights.size(0):
            self.make_weights(seq_len + self.offset, self.embedding_dim)
        return self.weights.index_select(0, position_ids.view(-1)).detach()


# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->ParlerTTS
class ParlerTTSRotaryEmbedding(nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
        super().__init__()
        self.scaling_factor = scaling_factor
        self.dim = dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        # For BC we register cos and sin cached
        self.max_seq_len_cached = max_position_embeddings
        t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
        t = t / self.scaling_factor
        freqs = torch.outer(t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("_cos_cached", emb.cos().to(torch.get_default_dtype()), persistent=False)
        self.register_buffer("_sin_cached", emb.sin().to(torch.get_default_dtype()), persistent=False)

    # Ignore copy
    @torch.no_grad()
    def forward(self, device_type, position_ids):
        # x: [bs, num_attention_heads, seq_len, head_size]
        inv_freq_expanded = self.inv_freq[None, :, None].expand(position_ids.shape[0], -1, 1)
        position_ids_expanded = position_ids[:, None, :]
        # Force float32 since bfloat16 loses precision on long contexts
        # See https://github.com/huggingface/transformers/pull/29285
        device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):
            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos()
            sin = emb.sin()
        return cos, sin


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(x, cos, sin, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        x (`torch.Tensor`): The tensor over which to apply the rope embeddings
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    x_embed = (x * cos) + (rotate_half(x) * sin)
    return x_embed


class ParlerTTSAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper. Modified to use GQA and MQA."""

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        num_key_value_heads: int,
        dropout: float = 0.0,
        is_decoder: bool = False,
        bias: bool = True,
        is_causal: bool = False,
        rope_embeddings: bool = False,
        layer_idx: Optional[int] = None,
        config: Optional[ParlerTTSDecoderConfig] = None,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        self.num_key_value_heads = num_key_value_heads
        self.num_key_value_groups = self.num_heads // self.num_key_value_heads
        self.config = config

        if (self.head_dim * num_heads) != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
                f" and `num_heads`: {num_heads})."
            )
        self.scaling = self.head_dim**-0.5
        self.is_decoder = is_decoder
        self.is_causal = is_causal

        if layer_idx is None and is_decoder:
            logger.warning_once(
                f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and "
                "will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )
        self.layer_idx = layer_idx

        self.k_proj = nn.Linear(embed_dim, self.num_key_value_heads * self.head_dim, bias=bias)
        self.v_proj = nn.Linear(embed_dim, self.num_key_value_heads * self.head_dim, bias=bias)
        self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

        self.rope_embeddings = rope_embeddings

    def _shape_query(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def _shape_key_value(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[EncoderDecoderCache] = None,
        attention_mask: Optional[torch.Tensor] = None,
        cos: Optional[torch.LongTensor] = None,
        sin: Optional[torch.LongTensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None
        bsz, tgt_len = hidden_states.shape[:2]

        # get query proj
        query_states = self.q_proj(hidden_states) * self.scaling
        query_states = self._shape_query(query_states, tgt_len, bsz)
        if self.rope_embeddings:
            query_states = apply_rotary_pos_emb(query_states, cos, sin)

        if past_key_value is not None:
            is_updated = past_key_value.is_updated.get(self.layer_idx)
            if is_cross_attention:
                # after the first generated id, we can subsequently re-use all key/value_states from cache
                past_key_value.is_updated[self.layer_idx] = True
                past_key_value = past_key_value.cross_attention_cache
            else:
                past_key_value = past_key_value.self_attention_cache

        # use key_value_states if cross attention
        current_states = key_value_states if key_value_states is not None else hidden_states
        if is_cross_attention and past_key_value and is_updated:
            # reuse k,v, cross_attentions
            key_states = past_key_value.key_cache[self.layer_idx]
            value_states = past_key_value.value_cache[self.layer_idx]
        else:
            key_states = self._shape_key_value(self.k_proj(current_states), -1, bsz)
            value_states = self._shape_key_value(self.v_proj(current_states), -1, bsz)

            if not is_cross_attention:
                # cached key states already have rope applied - only apply to new state
                key_states = apply_rotary_pos_emb(key_states, cos, sin) if self.rope_embeddings else key_states

            if past_key_value is not None:
                # save all key/value_states to cache to be re-used for fast auto-regressive generation
                cache_position = cache_position if not is_cross_attention else None
                key_states, value_states = past_key_value.update(
                    key_states, value_states, self.layer_idx, {"cache_position": cache_position}
                )

        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))

        if attention_mask is not None:  # no matter the length, we just slice it
            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
            attn_weights = attn_weights + causal_mask

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        if layer_head_mask is not None:
            if layer_head_mask.size() != (self.num_heads,):
                raise ValueError(
                    f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
                    f" {layer_head_mask.size()}"
                )
            attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights

        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
        attn_output = torch.matmul(attn_probs, value_states)

        if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2)
        # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
        # partitioned across GPUs when using tensor-parallelism.
        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights, past_key_value


def _get_unpad_data(attention_mask):
    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
    return (
        indices,
        cu_seqlens,
        max_seqlen_in_batch,
    )


# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenFlashAttention2 with Musicgen->ParlerTTS
class ParlerTTSFlashAttention2(ParlerTTSAttention):
    """
    ParlerTTS flash attention module. This module inherits from `ParlerTTSAttention` as the weights of the module stays
    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
    flash attention and deal with padding tokens in case the input contains any of them.
    """

    # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
        # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
        # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
        self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()

    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[EncoderDecoderCache] = None,
        attention_mask: Optional[torch.Tensor] = None,
        cos: Optional[torch.LongTensor] = None,
        sin: Optional[torch.LongTensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        # ParlerTTSFlashAttention2 attention does not support output_attentions
        if isinstance(past_key_value, StaticCache):
            raise ValueError(
                "The `static` cache implementation is not compatible with `attn_implementation='flash_attention_2'`. "
                "Use `attn_implementation='sdpa'` in the meantime, and open an issue at https://github.com/huggingface/transformers"
            )
        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None

        bsz, tgt_len = hidden_states.shape[:2]

        # get query proj
        query_states = self.q_proj(hidden_states).view(bsz, tgt_len, self.num_heads, self.head_dim)

        if self.rope_embeddings:
            query_states = apply_rotary_pos_emb(query_states, cos, sin, unsqueeze_dim=2)

        if past_key_value is not None:
            is_updated = past_key_value.is_updated.get(self.layer_idx)
            if is_cross_attention:
                # after the first generated id, we can subsequently re-use all key/value_states from cache
                past_key_value.is_updated[self.layer_idx] = True
                past_key_value = past_key_value.cross_attention_cache
            else:
                past_key_value = past_key_value.self_attention_cache

        # use key_value_states if cross attention
        current_states = key_value_states if key_value_states is not None else hidden_states
        if is_cross_attention and past_key_value and is_updated:
            # reuse k,v, cross_attentions
            key_states = past_key_value.key_cache[self.layer_idx]
            value_states = past_key_value.value_cache[self.layer_idx]
        else:
            key_states = self._shape_key_value(self.k_proj(current_states), -1, bsz)
            value_states = self._shape_key_value(self.v_proj(current_states), -1, bsz)

            if not is_cross_attention and self.rope_embeddings:
                # cached key states already have rope applied - only apply to new state
                key_states = apply_rotary_pos_emb(key_states, cos, sin)

            if past_key_value is not None:
                # save all key/value_states to cache to be re-used for fast auto-regressive generation
                cache_position = cache_position if not is_cross_attention else None
                key_states, value_states = past_key_value.update(
                    key_states, value_states, self.layer_idx, {"cache_position": cache_position}
                )

        # # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]
        # #  We would need to refactor the KV cache to be able to avoid many of these transpose/reshape/view.
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)

        # In PEFT, usually we cast the layer norms in float32 for training stability reasons
        # therefore the input hidden states gets silently casted in float32. Hence, we need
        # cast them back in the correct dtype just to be sure everything works as expected.
        # This might slowdown training & inference so it is recommended to not cast the LayerNorms
        # in fp32. (LlamaRMSNorm handles it correctly)

        if query_states.dtype == torch.float32 or value_states.dtype == torch.float32:
            if torch.is_autocast_enabled():
                target_dtype = torch.get_autocast_gpu_dtype()
            # Handle the case where the model is quantized
            elif hasattr(self.config, "_pre_quantization_dtype"):
                target_dtype = self.config._pre_quantization_dtype
            else:
                target_dtype = self.q_proj.weight.dtype

            logger.warning_once(
                f"The input hidden states seems to be silently casted in float32, this might be related to"
                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
                f" {target_dtype}."
            )

            query_states = query_states.to(target_dtype)
            key_states = key_states.to(target_dtype)
            value_states = value_states.to(target_dtype)

        attn_output = self._flash_attention_forward(
            query_states, key_states, value_states, attention_mask, tgt_len, dropout=self.dropout
        )

        attn_output = attn_output.reshape(bsz, tgt_len, -1)
        attn_output = self.out_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value

    # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
    def _flash_attention_forward(
        self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
    ):
        """
        Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
        first unpad the input, then computes the attention scores and pad the final attention scores.
        Args:
            query_states (`torch.Tensor`):
                Input query states to be passed to Flash Attention API
            key_states (`torch.Tensor`):
                Input key states to be passed to Flash Attention API
            value_states (`torch.Tensor`):
                Input value states to be passed to Flash Attention API
            attention_mask (`torch.Tensor`):
                The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
                position of padding tokens and 1 for the position of non-padding tokens.
            dropout (`float`):
                Attention dropout
            softmax_scale (`float`, *optional*):
                The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
        """
        if not self._flash_attn_uses_top_left_mask:
            causal = self.is_causal
        else:
            # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
            causal = self.is_causal and query_length != 1

        # Contains at least one padding token in the sequence
        if attention_mask is not None:
            batch_size = query_states.shape[0]
            query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
                query_states, key_states, value_states, attention_mask, query_length
            )

            cu_seqlens_q, cu_seqlens_k = cu_seq_lens
            max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens

            attn_output_unpad = flash_attn_varlen_func(
                query_states,
                key_states,
                value_states,
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_k=cu_seqlens_k,
                max_seqlen_q=max_seqlen_in_batch_q,
                max_seqlen_k=max_seqlen_in_batch_k,
                dropout_p=dropout,
                softmax_scale=softmax_scale,
                causal=causal,
            )

            attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
        else:
            attn_output = flash_attn_func(
                query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
            )

        return attn_output

    # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
    def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
        indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
        batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape

        key_layer = index_first_axis(
            key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
        )
        value_layer = index_first_axis(
            value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
        )
        if query_length == kv_seq_len:
            query_layer = index_first_axis(
                query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
            )
            cu_seqlens_q = cu_seqlens_k
            max_seqlen_in_batch_q = max_seqlen_in_batch_k
            indices_q = indices_k
        elif query_length == 1:
            max_seqlen_in_batch_q = 1
            cu_seqlens_q = torch.arange(
                batch_size + 1, dtype=torch.int32, device=query_layer.device
            )  # There is a memcpy here, that is very bad.
            indices_q = cu_seqlens_q[:-1]
            query_layer = query_layer.squeeze(1)
        else:
            # The -q_len: slice assumes left padding.
            attention_mask = attention_mask[:, -query_length:]
            query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)

        return (
            query_layer,
            key_layer,
            value_layer,
            indices_q,
            (cu_seqlens_q, cu_seqlens_k),
            (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
        )


# Copied from transformers.models.bart.modeling_bart.BartSdpaAttention with Bart->Musicgen
class ParlerTTSSdpaAttention(ParlerTTSAttention):
    def forward(
        self,
        hidden_states: torch.Tensor,
        key_value_states: Optional[torch.Tensor] = None,
        past_key_value: Optional[EncoderDecoderCache] = None,
        attention_mask: Optional[torch.Tensor] = None,
        cos: Optional[torch.LongTensor] = None,
        sin: Optional[torch.LongTensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        output_attentions: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""
        if output_attentions or layer_head_mask is not None:
            # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
            logger.warning_once(
                "ParlerTTSModel is using ParlerTTSSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
                ' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
            )
            return super().forward(
                hidden_states,
                key_value_states=key_value_states,
                past_key_value=past_key_value,
                attention_mask=attention_mask,
                layer_head_mask=layer_head_mask,
                output_attentions=output_attentions,
                cache_position=cache_position,
            )

        # if key_value_states are provided this layer is used as a cross-attention layer
        # for the decoder
        is_cross_attention = key_value_states is not None

        bsz, tgt_len = hidden_states.shape[:2]

        # get query proj
        query_states = self.q_proj(hidden_states)
        query_states = self._shape_query(query_states, tgt_len, bsz)

        if self.rope_embeddings:
            query_states = apply_rotary_pos_emb(query_states, cos, sin)

        if past_key_value is not None:
            is_updated = past_key_value.is_updated.get(self.layer_idx)
            if is_cross_attention:
                # after the first generated id, we can subsequently re-use all key/value_states from cache
                past_key_value.is_updated[self.layer_idx] = True
                past_key_value = past_key_value.cross_attention_cache
            else:
                past_key_value = past_key_value.self_attention_cache

        # use key_value_states if cross attention
        current_states = key_value_states if key_value_states is not None else hidden_states
        if is_cross_attention and past_key_value and is_updated:
            # reuse k,v, cross_attentions
            key_states = past_key_value.key_cache[self.layer_idx]
            value_states = past_key_value.value_cache[self.layer_idx]
        else:
            key_states = self._shape_key_value(self.k_proj(current_states), -1, bsz)
            value_states = self._shape_key_value(self.v_proj(current_states), -1, bsz)

            if not is_cross_attention and self.rope_embeddings:
                # cached key states already have rope applied - only apply to new state
                key_states = apply_rotary_pos_emb(key_states, cos, sin)

            if past_key_value is not None:
                # save all key/value_states to cache to be re-used for fast auto-regressive generation
                cache_position = cache_position if not is_cross_attention else None
                key_states, value_states = past_key_value.update(
                    key_states, value_states, self.layer_idx, {"cache_position": cache_position}
                )

        causal_mask = attention_mask
        if attention_mask is not None:  # no matter the length, we just slice it
            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]

        # repeat k/v heads if n_kv_heads < n_heads
        key_states = repeat_kv(key_states, self.num_key_value_groups)
        value_states = repeat_kv(value_states, self.num_key_value_groups)

        # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
        # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
        # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
        is_causal = True if self.is_causal and causal_mask is None and tgt_len > 1 else False

        # NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
        # but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
        attn_output = torch.nn.functional.scaled_dot_product_attention(
            query_states,
            key_states,
            value_states,
            attn_mask=causal_mask,
            dropout_p=self.dropout if self.training else 0.0,
            # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
            is_causal=is_causal,
        )

        if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2)

        # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
        # partitioned across GPUs when using tensor-parallelism.
        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, None, past_key_value


PARLERTTS_ATTENTION_CLASSES = {
    "eager": ParlerTTSAttention,
    "sdpa": ParlerTTSSdpaAttention,
    "flash_attention_2": ParlerTTSFlashAttention2,
}


class ParlerTTSDecoderLayer(nn.Module):
    def __init__(self, config: ParlerTTSDecoderConfig, layer_idx: int = None):
        super().__init__()
        self.embed_dim = config.hidden_size

        self.self_attn = PARLERTTS_ATTENTION_CLASSES[config._attn_implementation](
            embed_dim=self.embed_dim,
            num_heads=config.num_attention_heads,
            num_key_value_heads=config.num_key_value_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
            is_causal=True,
            bias=False,
            rope_embeddings=config.rope_embeddings,
            layer_idx=layer_idx,
            config=config,
        )
        self.dropout = config.dropout
        self.activation_fn = ACT2FN[config.activation_function]
        self.activation_dropout = config.activation_dropout

        self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        cross_attn_implementation = config._attn_implementation
        if config.cross_attention_implementation_strategy == "always_eager":
            cross_attn_implementation = "eager"
        elif config.cross_attention_implementation_strategy == "always_sdpa":
            cross_attn_implementation = "sdpa"
        self.encoder_attn = PARLERTTS_ATTENTION_CLASSES[cross_attn_implementation](
            self.embed_dim,
            config.num_attention_heads,
            num_key_value_heads=config.num_cross_attention_key_value_heads,
            dropout=config.attention_dropout,
            is_decoder=True,
            bias=False,
            rope_embeddings=config.rope_embeddings,
            layer_idx=layer_idx,
            config=config,
        )
        self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
        self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=False)
        self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=False)
        self.final_layer_norm = nn.LayerNorm(self.embed_dim)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        cos: Optional[torch.LongTensor] = None,
        sin: Optional[torch.LongTensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        layer_head_mask: Optional[torch.Tensor] = None,
        cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
        past_key_value: Optional[EncoderDecoderCache] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = True,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> torch.Tensor:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
                config.n_positions - 1]`.
            encoder_hidden_states (`torch.FloatTensor`):
                cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
            encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
            layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
                `(encoder_attention_heads,)`.
            cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
                size `(decoder_attention_heads,)`.
            past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states
        hidden_states = self.self_attn_layer_norm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            past_key_value=past_key_value,
            attention_mask=attention_mask,
            cos=cos,
            sin=sin,
            layer_head_mask=layer_head_mask,
            output_attentions=output_attentions,
            cache_position=cache_position,
        )
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states

        # Cross-Attention Block
        cross_attn_weights = None
        if encoder_hidden_states is not None:
            residual = hidden_states
            hidden_states = self.encoder_attn_layer_norm(hidden_states)
            hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
                hidden_states=hidden_states,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                cos=cos,
                sin=sin,
                layer_head_mask=cross_attn_layer_head_mask,
                past_key_value=past_key_value,
                output_attentions=output_attentions,
            )
            hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
            hidden_states = residual + hidden_states

            # add cross-attn to positions 1 of present_key_value tuple
            present_key_value = (present_key_value, cross_attn_present_key_value)

        # Fully Connected
        residual = hidden_states
        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.activation_fn(self.fc1(hidden_states))
        hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
        hidden_states = self.fc2(hidden_states)
        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights, cross_attn_weights)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenPreTrainedModel with Musicgen->ParlerTTS
class ParlerTTSPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = ParlerTTSDecoderConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _no_split_modules = ["ParlerTTSDecoderLayer", "ParlerTTSAttention"]
    _supports_cache_class = True
    _supports_static_cache = True

    def _init_weights(self, module):
        std = self.config.initializer_factor
        if isinstance(module, (nn.Linear, nn.Conv1d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


MUSICGEN_START_DOCSTRING = r"""

    The ParlerTTS model was proposed in [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by
    Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, Alexandre Défossez. It is an
    encoder decoder transformer trained on the task of conditional music generation

    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`ParlerTTSConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

MUSICGEN_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        decoder_input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, target_sequence_length)`, *optional*):
            Indices of decoder input sequence tokens in the vocabulary, corresponding to the sequence of audio codes.

            Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes,
            such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details.

            [What are decoder input IDs?](../glossary#decoder-input-ids)

            <Tip warning={true}>

            The `decoder_input_ids` will automatically be converted from shape `(batch_size * num_codebooks,
            target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If
            you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of
            frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks,
            target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as
            `decoder_input_ids`.

            </Tip>

        decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
            Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
            be used by default.
        head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
            1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
            Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
            `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
            hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
            TODO: it's passed through enc_to_dec_proj and optionnally we concat the prompt hidden states in certain cases.
        past_key_values (`EncoderDecoderCache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
            Pre-computed hidden-states that can be used to speed up auto-regressive (sequential) decoding. There are
            four sets of pre-computed hidden-states: key and values states in the self-attention blocks (2) and
            in the cross-attention blocks (2). The `past_key_values` are returned when `use_cache=True` is passed or
            when `config.use_cache=True`

            Two formats are allowed:
            - An [`~cache_utils.EncoderDecoderCache`] instance;
            - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
        decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
            representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
            input (see `past_key_values`). This is useful if you want more control over how to convert
            `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.

            If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
            of `inputs_embeds`.
        prompt_input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input prompt sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        prompt_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding prompt token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        prompt_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `prompt_input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert `prompt_input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
            Indices depicting the position of the input sequence tokens in the sequence. It is used to update the cache
            in the correct position and to infer the complete sequence length.
"""

MUSICGEN_DECODER_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, sequence_length)`):
            Indices of input sequence tokens in the vocabulary, corresponding to the sequence of audio codes.

            Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes,
            such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details.

            [What are input IDs?](../glossary#input-ids)

            <Tip warning={true}>

            The `input_ids` will automatically be converted from shape `(batch_size * num_codebooks,
            target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If
            you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of
            frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks,
            target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as
            `input_ids`.

            </Tip>

        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of
            the decoder.
        encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
            Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
            selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        prompt_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
            Sequence of prompt hidden-states at the output of the initial embedding layer. Concatenated to the input embeds.
        prompt_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
            Mask to avoid performing cross-attention on padding tokens indices of prompt input_ids. Mask values
            selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
            Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
            cross-attention on hidden heads. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
            `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.

            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.

            If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
            don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
            `decoder_input_ids` of shape `(batch_size, sequence_length)`.
        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


class ParlerTTSDecoder(ParlerTTSPreTrainedModel):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`ParlerTTSDecoderLayer`]
    """

    def __init__(self, config: ParlerTTSDecoderConfig):
        super().__init__(config)
        self.dropout = config.dropout
        self.layerdrop = config.layerdrop
        self.max_target_positions = config.max_position_embeddings
        self.d_model = config.hidden_size
        self.num_codebooks = config.num_codebooks
        self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0

        # TODO(YL): actually doesn't need the +1 if initialized correctly. Too late to change now.
        embed_dim = config.vocab_size + 1  # + 1 for pad token id
        self.embed_tokens = nn.ModuleList(
            [nn.Embedding(embed_dim, config.hidden_size) for _ in range(config.num_codebooks)]
        )

        self.rope_embeddings = config.rope_embeddings
        if not config.rope_embeddings:
            self.embed_positions = ParlerTTSSinusoidalPositionalEmbedding(
                config.max_position_embeddings,
                config.hidden_size,
            )
        else:
            self.rotary_emb = ParlerTTSRotaryEmbedding(
                config.hidden_size // config.num_attention_heads,
                max_position_embeddings=config.max_position_embeddings,
                base=config.rope_theta,
            )
        self.layers = nn.ModuleList(
            [ParlerTTSDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.layer_norm = nn.LayerNorm(config.hidden_size)
        self.attn_implementation = config._attn_implementation
        encoder_attn_implementation = config._attn_implementation
        if config.cross_attention_implementation_strategy is not None:
            encoder_attn_implementation = (
                "sdpa" if config.cross_attention_implementation_strategy == "always_sdpa" else "eager"
            )
        self.encoder_attn_implementation = encoder_attn_implementation
        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    @add_start_docstrings_to_model_forward(MUSICGEN_DECODER_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.LongTensor] = None,
        prompt_hidden_states: Optional[torch.FloatTensor] = None,
        prompt_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position=None,
    ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
        elif input_ids is not None:
            # (bsz * codebooks, seq_len) -> (bsz, codebooks, seq_len)
            input = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1])
            bsz, num_codebooks, seq_len = input.shape
            input_shape = (bsz, seq_len)
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            input = inputs_embeds[:, :, -1:]
        else:
            raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")

        if inputs_embeds is None:
            inputs_embeds = sum([self.embed_tokens[codebook](input[:, codebook]) for codebook in range(num_codebooks)])

        prepended_sequence_length = 0
        # if prompt_hidden_states, fuse to inputs_embeds and update input shape
        if prompt_hidden_states is not None:
            prepended_sequence_length = prompt_hidden_states.shape[-2]
            inputs_embeds = torch.cat([prompt_hidden_states, inputs_embeds], dim=1)

        return_legacy_cache = False
        return_self_attention_cache = False
        if use_cache or past_key_values is not None:
            if isinstance(past_key_values, Cache) and not isinstance(past_key_values, EncoderDecoderCache):
                return_self_attention_cache = True
                past_key_values = EncoderDecoderCache(past_key_values, DynamicCache())
            elif not isinstance(past_key_values, EncoderDecoderCache):
                return_legacy_cache = True
                logger.warning_once(
                    "Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.43.0. "
                    "You should pass an instance of `EncoderDecoderCache` instead, e.g. "
                    "`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`."
                )
                past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values)

        past_key_values_length = 0
        if cache_position is not None:
            past_key_values_length = cache_position[0]
        elif past_key_values is not None:
            past_key_values_length = past_key_values.get_seq_length()

        if cache_position is None:
            cache_position = torch.arange(
                past_key_values_length, past_key_values_length + input_shape[1] + prepended_sequence_length, device=inputs_embeds.device
            )

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        # NOTE: 1. As it is, the masked ids from the prompt will still count in the positions embeddings
        # NOTE: 2. we want to concatenate the prompt attention mask and the decoder attention mask
        # i.i.f `prompt_cross_attention=False`. ParlerTTSForConditionalGeneration's taking care of setting
        # `prompt_attention_mask=None`
        if prompt_attention_mask is not None and attention_mask is not None:
            attention_mask = torch.cat([prompt_attention_mask, attention_mask], dim=1)
        elif prompt_attention_mask is not None:
            logger.warning_once(
                "`prompt_attention_mask` is specified but `attention_mask` is not. A full `attention_mask` will be created. Make sure this is the intended behaviour."
            )
            if past_key_values_length == 0:
                attention_mask = torch.cat(
                    [
                        prompt_attention_mask,
                        torch.ones(input_shape, device=self.device, dtype=prompt_attention_mask.dtype),
                    ],
                    dim=1,
                )
            else:
                # In the generation case of `prompt_cross_attention=True`, we need to recreate an attention mask from scratch
                # to be able to prepend the prompt attention mask.
                # Since we generate token per token, we can recompute the generated length from the information we have.
                generated_length = past_key_values_length - prompt_attention_mask.shape[1] + 1
                attention_mask = torch.cat(
                    [
                        prompt_attention_mask,
                        torch.ones(
                            (input_shape[0], generated_length), device=self.device, dtype=prompt_attention_mask.dtype
                        ),
                    ],
                    dim=1,
                )

        input_shape = inputs_embeds.size()[:-1]
        cos, sin = None, None

        if not self.rope_embeddings:
            # embed positions
            # TODO: As it is, the masked ids from the prompt will still count in the positions embeddings
            # maybe should modify position embeddings
            positions = self.embed_positions(inputs_embeds, past_key_values_length)
            hidden_states = inputs_embeds + positions.to(inputs_embeds.device)
        else:
            hidden_states = inputs_embeds

            if position_ids is None:
                if attention_mask is not None:
                    # masked ids will **not** count in the position embeddings
                    position_ids = attention_mask.long().cumsum(-1) - 1
                    position_ids.masked_fill_(attention_mask == 0, 1)
                else:
                    position_ids = torch.arange(
                        past_key_values_length,
                        input_shape[1] + past_key_values_length,
                        dtype=torch.long,
                        device=inputs_embeds.device,
                    )
                    position_ids = position_ids.unsqueeze(0)

                # Some generation methods already pass only the last input ID
                if position_ids.shape[1] > input_shape[1]:
                    position_ids = position_ids[:, -input_shape[1] :]

            cos, sin = self.rotary_emb(hidden_states.device.type, position_ids)
            cos, sin = cos.to(hidden_states.dtype), sin.to(hidden_states.dtype)

        hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)

        causal_mask = self._update_causal_mask(
            attention_mask,
            inputs_embeds,
            cache_position,
            past_key_values.self_attention_cache if past_key_values is not None else None,
            output_attentions,
        )

        if encoder_hidden_states is not None and encoder_attention_mask is not None:
            if self.encoder_attn_implementation == "flash_attention_2":
                encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None
            elif self.encoder_attn_implementation == "sdpa" and cross_attn_head_mask is None and not output_attentions:
                # output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on
                # the manual implementation that requires a 4D causal mask in all cases.
                # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
                encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
                    encoder_attention_mask,
                    inputs_embeds.dtype,
                    tgt_len=input_shape[-1],
                )
            else:
                # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
                encoder_attention_mask = _prepare_4d_attention_mask(
                    encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
                )

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..."
                )
                use_cache = False
        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None

        # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
        for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
            if attn_mask is not None:
                if attn_mask.size()[0] != len(self.layers):
                    raise ValueError(
                        f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
                        f" {attn_mask.size()[0]}."
                    )
        for idx, decoder_layer in enumerate(self.layers):
            # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
            if output_hidden_states:
                all_hidden_states += (hidden_states,)
            dropout_probability = random.uniform(0, 1)
            if self.training and (dropout_probability < self.layerdrop):
                continue

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.forward,
                    hidden_states,
                    causal_mask,
                    cos,
                    sin,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    head_mask[idx] if head_mask is not None else None,
                    cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
                    None,
                    output_attentions,
                    use_cache,
                    cache_position,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=causal_mask,
                    cos=cos,
                    sin=sin,
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    layer_head_mask=(head_mask[idx] if head_mask is not None else None),
                    cross_attn_layer_head_mask=(
                        cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
                    ),
                    past_key_value=past_key_values if use_cache else None,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    cache_position=cache_position,
                )
            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

                if encoder_hidden_states is not None:
                    all_cross_attentions += (layer_outputs[2],)

        hidden_states = self.layer_norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = past_key_values if use_cache else None
        if return_self_attention_cache:
            next_cache = past_key_values.self_attention_cache
        if return_legacy_cache:
            next_cache = past_key_values.to_legacy_cache()
        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            cross_attentions=all_cross_attentions,
        )

    # Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
    def _update_causal_mask(
        self,
        attention_mask: torch.Tensor,
        input_tensor: torch.Tensor,
        cache_position: torch.Tensor,
        past_key_values: Cache,
        output_attentions: bool,
    ):
        # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
        # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
        # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
        # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114

        if self.config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and 0.0 in attention_mask:
                return attention_mask
            return None

        # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
        # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
        # to infer the attention mask.
        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
        using_static_cache = isinstance(past_key_values, StaticCache)

        # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
        if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
            if AttentionMaskConverter._ignore_causal_mask_sdpa(
                attention_mask,
                inputs_embeds=input_tensor,
                past_key_values_length=past_seen_tokens,
                is_training=self.training,
            ):
                return None

        dtype, device = input_tensor.dtype, input_tensor.device
        min_dtype = torch.finfo(dtype).min
        sequence_length = input_tensor.shape[1]
        if using_static_cache:
            target_length = past_key_values.get_max_length()
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else past_seen_tokens + sequence_length + 1
            )

        if attention_mask is not None and attention_mask.dim() == 4:
            # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
            if attention_mask.max() != 0:
                raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
            causal_mask = attention_mask
        else:
            causal_mask = torch.full(
                (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
            )
            if sequence_length != 1:
                causal_mask = torch.triu(causal_mask, diagonal=1)
            causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
            causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
            if attention_mask is not None:
                causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
                mask_length = attention_mask.shape[-1]
                padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
                padding_mask = padding_mask == 0
                causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
                    padding_mask, min_dtype
                )
        if (
            self.config._attn_implementation == "sdpa"
            and attention_mask is not None
            and attention_mask.device.type == "cuda"
            and not output_attentions
        ):
            # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
            # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
            # Details: https://github.com/pytorch/pytorch/issues/110213
            causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)

        return causal_mask


@add_start_docstrings(
    "The bare ParlerTTS decoder model outputting raw hidden-states without any specific head on top.",
    MUSICGEN_START_DOCSTRING,
)
# Copied from transformers.models.musicgen.modeling_musicgen.MusicgenModel with Musicgen->ParlerTTS
class ParlerTTSModel(ParlerTTSPreTrainedModel):
    def __init__(self, config: ParlerTTSDecoderConfig):
        super().__init__(config)
        self.decoder = ParlerTTSDecoder(config)
        self.config = config
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.decoder.embed_tokens

    def set_input_embeddings(self, value):
        self.decoder.embed_tokens = value

    def get_decoder(self):
        return self.decoder

    @add_start_docstrings_to_model_forward(MUSICGEN_DECODER_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.LongTensor] = None,
        prompt_hidden_states: Optional[torch.FloatTensor] = None,
        prompt_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
        decoder_outputs = self.decoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            encoder_attention_mask=encoder_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            prompt_hidden_states=prompt_hidden_states,
            prompt_attention_mask=prompt_attention_mask,
            head_mask=head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        if not return_dict:
            return decoder_outputs

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            hidden_states=decoder_outputs.hidden_states,
            attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
        )


@add_start_docstrings(
    "The Parler-TTS decoder model with a language modelling head on top.",
    MUSICGEN_START_DOCSTRING,
)
class ParlerTTSForCausalLM(ParlerTTSPreTrainedModel):
    def __init__(self, config: ParlerTTSDecoderConfig):
        super().__init__(config)

        self.model = ParlerTTSModel(config)

        self.num_codebooks = config.num_codebooks
        self.vocab_size = config.vocab_size
        self.num_codebooks = config.num_codebooks
        
        self.use_fused_lm_heads = config.use_fused_lm_heads
        if self.use_fused_lm_heads:
            self.lm_heads = nn.Linear(config.hidden_size, config.vocab_size * config.num_codebooks, bias=False)
        else:
            self.lm_heads = nn.ModuleList(
            [nn.Linear(config.hidden_size, config.vocab_size, bias=False) for _ in range(config.num_codebooks)]
        )

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.decoder.embed_tokens

    def set_input_embeddings(self, value):
        self.model.decoder.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_heads

    def set_output_embeddings(self, new_embeddings):
        self.lm_heads = new_embeddings

    def set_decoder(self, decoder):
        self.model.decoder = decoder

    def get_decoder(self):
        return self.model.decoder

    @add_start_docstrings_to_model_forward(MUSICGEN_DECODER_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=ParlerTTSCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.LongTensor] = None,
        prompt_hidden_states: Optional[torch.FloatTensor] = None,
        prompt_attention_mask: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        loss_reduction: str = "mean",
    ) -> Union[Tuple, ParlerTTSCausalLMOutputWithCrossAttentions]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length, num_codebooks)`, *optional*):
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
        Returns:
        """

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            prompt_hidden_states=prompt_hidden_states,
            prompt_attention_mask=prompt_attention_mask,
            head_mask=head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        hidden_states = outputs[0]

        if self.use_fused_lm_heads:
            lm_logits = self.lm_heads(hidden_states).view(hidden_states.shape[0], -1, self.num_codebooks, self.vocab_size).transpose(1,2)
        else:
            lm_logits = torch.stack([head(hidden_states) for head in self.lm_heads], dim=1)

        loss = None
        per_codebook_losses = None
        if labels is not None:
            codebook_weights = self.config.codebook_weights
            # since encoder hidden states have concatenated to hidden states, take the last hidden states corresponding to labels
            logits = lm_logits[:, :, -labels.shape[1] :]

            loss_fct = CrossEntropyLoss(reduction=loss_reduction)
            loss = torch.zeros([], device=self.device)
            
            per_codebook_losses = []

            # (bsz, vocab_size, seq_len, num_codebooks), (bsz, seq_len, num_codebooks)
            labels = labels.masked_fill(labels == self.config.bos_token_id, -100)

            # we use every codebooks token AND one single EOS at the end of each codebooks
            mask = (input_ids.transpose(1, 2) != self.config.eos_token_id) & ((labels != -100))

            # per codebook cross-entropy
            for codebook in range(self.config.num_codebooks):
                codebook_logits = logits[:, codebook].contiguous().view(-1, logits.shape[-1])
                codebook_mask = mask[..., codebook].contiguous().view(-1)
                codebook_labels = labels[..., codebook].contiguous().view(-1)

                codebook_loss = loss_fct(codebook_logits[codebook_mask], codebook_labels[codebook_mask])
                per_codebook_losses.append(codebook_loss)

                if codebook_weights is not None:
                    codebook_loss = codebook_loss*codebook_weights[codebook]
                    
                loss += codebook_loss

            if codebook_weights is not None:
                loss = loss / sum(codebook_weights)
            else:
                loss = loss / self.config.num_codebooks

        # (bsz, num_codebooks, seq_len, vocab_size) -> (bsz * num_codebooks, seq_len, vocab_size)
        lm_logits = lm_logits.reshape(-1, *lm_logits.shape[2:])

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return ((loss,) + output + (per_codebook_losses, )) if loss is not None else output

        return ParlerTTSCausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
            per_codebook_losses=per_codebook_losses,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        attention_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        prompt_hidden_states=None,
        prompt_attention_mask=None,
        head_mask=None,
        cross_attn_head_mask=None,
        past_key_values=None,
        use_cache=True,
        delay_pattern_mask=None,
        cache_position=None,
        inputs_embeds=None,
        **kwargs,
    ):
        if delay_pattern_mask is None:
            input_ids, delay_pattern_mask = self.build_delay_pattern_mask(
                input_ids,
                bos_token_id=self.generation_config.bos_token_id,
                pad_token_id=self.generation_config.pad_token_id,
                max_length=self.generation_config.max_length,
            )

        # apply the delay pattern mask
        input_ids = self.apply_delay_pattern_mask(input_ids, delay_pattern_mask)

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)

        if past_key_values is not None:
            input_ids = input_ids[:, -1:]
            if position_ids is not None:
                position_ids = position_ids[:, -input_ids.shape[1] :]

            # we only want to use prompt signal in the 1st generation step but keeping the attention mask
            prompt_hidden_states = None

        return {
            "input_ids": input_ids.contiguous(), # `contiguous()` needed for compilation use cases
            "attention_mask": attention_mask,
            "position_ids": position_ids,
            "encoder_hidden_states": encoder_hidden_states,
            "encoder_attention_mask": encoder_attention_mask,
            "prompt_hidden_states": prompt_hidden_states,
            "prompt_attention_mask": prompt_attention_mask,
            "head_mask": head_mask,
            "cross_attn_head_mask": cross_attn_head_mask,
            "past_key_values": past_key_values,
            "use_cache": use_cache,
            "cache_position": cache_position,
            "inputs_embeds": inputs_embeds,
        }

    # Ignore copy
    def build_delay_pattern_mask(
        self, input_ids: torch.LongTensor, bos_token_id: int, pad_token_id: int, max_length: int = None
    ):
        """Build a delayed pattern mask to the input_ids. Each codebook is offset by the previous codebook by
        one, giving a delayed pattern mask at the start of sequence and end of sequence. Take the example where there
        are 4 codebooks and a max sequence length of 8, we have the delayed pattern mask of shape `(codebooks,
        seq_len)`:
        - [B, -1, -1, -1, -1, P, P, P]
        - [B, B, -1, -1, -1, -1, P, P]
        - [B, B, B, -1, -1, -1, -1, P]
        - [B, B, B, B, -1, -1, -1, -1]
        where P is the special padding token id and -1 indicates that the token is valid for prediction. If we include
        a prompt (decoder input ids), the -1 positions indicate where new tokens should be predicted. Otherwise, the
        mask is set to the value in the prompt:
        - [B, a, b, -1, -1, P, P, P]
        - [B, B, c, d, -1, -1, P, P]
        - [B, B, B, e, f, -1, -1, P]
        - [B, B, B, B, g, h, -1, -1]
        where a-h indicate the input prompt (decoder input ids) that are offset by 1. Now, we only override the -1
        tokens in our prediction.
        """
        max_length = max_length if max_length is not None else self.generation_config.max_length
        return build_delay_pattern_mask(input_ids, bos_token_id, pad_token_id, max_length, self.num_codebooks)

    @staticmethod
    def apply_delay_pattern_mask(input_ids, decoder_pad_token_mask):
        """Apply a delay pattern mask to the decoder input ids, only preserving predictions where
        the mask is set to -1, and otherwise setting to the value detailed in the mask."""
        return apply_delay_pattern_mask(input_ids, decoder_pad_token_mask)

    @torch.no_grad()
    def generate(
        self,
        inputs: Optional[torch.Tensor] = None,
        generation_config: Optional[GenerationConfig] = None,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        synced_gpus: Optional[bool] = None,
        streamer: Optional["BaseStreamer"] = None,
        **kwargs,
    ):
        """
        Generates sequences of token ids for models with a language modeling head.

        <Tip warning={true}>

        Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
        model's default generation configuration. You can override any `generation_config` by passing the corresponding
        parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.

        For an overview of generation strategies and code examples, check out the [following
        guide](./generation_strategies).

        </Tip>

        Parameters:
            inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
                The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
                method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
                should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of
                `input_ids`, `input_values`, `input_features`, or `pixel_values`.
            generation_config (`~generation.GenerationConfig`, *optional*):
                The generation configuration to be used as base parametrization for the generation call. `**kwargs`
                passed to generate matching the attributes of `generation_config` will override them. If
                `generation_config` is not provided, the default will be used, which had the following loading
                priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
                configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
                default values, whose documentation should be checked to parameterize generation.
            logits_processor (`LogitsProcessorList`, *optional*):
                Custom logits processors that complement the default logits processors built from arguments and
                generation config. If a logit processor is passed that is already created with the arguments or a
                generation config an error is thrown. This feature is intended for advanced users.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                Custom stopping criteria that complement the default stopping criteria built from arguments and a
                generation config. If a stopping criteria is passed that is already created with the arguments or a
                generation config an error is thrown. This feature is intended for advanced users.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
            kwargs (`Dict[str, Any]`, *optional*):
                Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
                forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
                specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.

        Return:
            [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
            or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.

                If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
                [`~utils.ModelOutput`] types are:

                    - [`~generation.GenerateDecoderOnlyOutput`],
                    - [`~generation.GenerateBeamDecoderOnlyOutput`]

                If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
                [`~utils.ModelOutput`] types are:

                    - [`~generation.GenerateEncoderDecoderOutput`],
                    - [`~generation.GenerateBeamEncoderDecoderOutput`]
        """
        # 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects
        if generation_config is None:
            generation_config = self.generation_config

        generation_config = copy.deepcopy(generation_config)
        model_kwargs = generation_config.update(**kwargs)  # All unused kwargs must be model kwargs
        generation_config.validate()
        self._validate_model_kwargs(model_kwargs.copy())

        # 2. Set generation parameters if not already defined
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()

        requires_attention_mask = "encoder_outputs" not in model_kwargs
        kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None

        # 3. Define model inputs`
        input_ids, model_input_name, model_kwargs = self._prepare_model_inputs(
            inputs, generation_config.bos_token_id, model_kwargs
        )
        batch_size = input_ids.shape[0] // self.num_codebooks
        self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=input_ids.device)

        # 4. Define other model kwargs
        model_kwargs["use_cache"] = generation_config.use_cache

        if model_kwargs.get("attention_mask", None) is None and requires_attention_mask:
            self._prepare_attention_mask_for_generation(
                input_ids, generation_config.pad_token_id, generation_config.eos_token_id
            )

        # 5. Prepare `max_length` depending on other stopping criteria.
        input_ids_length = input_ids.shape[-1]
        has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
        has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None
        generation_config = self._prepare_generated_length(
            generation_config=generation_config,
            has_default_max_length=has_default_max_length,
            has_default_min_length=has_default_min_length,
            model_input_name=model_input_name,
            inputs_tensor=input_ids,
            input_ids_length=input_ids_length,
        )

        # 6. Prepare `input_ids` which will be used for auto-regressive generation
        # Build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Parler-TTS)
        input_ids, delay_pattern_mask = self.build_delay_pattern_mask(
            input_ids,
            pad_token_id=generation_config._decoder_start_token_tensor,
            max_length=generation_config.max_length,
        )

        if streamer is not None:
            streamer.put(input_ids.cpu())

        # stash the delay mask so that we don't have to recompute it in each forward pass
        model_kwargs["delay_pattern_mask"] = delay_pattern_mask

        # 7. determine generation mode
        is_greedy_gen_mode = (
            (generation_config.num_beams == 1)
            and (generation_config.num_beam_groups == 1)
            and generation_config.do_sample is False
        )
        is_sample_gen_mode = (
            (generation_config.num_beams == 1)
            and (generation_config.num_beam_groups == 1)
            and generation_config.do_sample is True
        )

        # 8. prepare distribution pre_processing samplers
        logits_processor = self._get_logits_processor(
            generation_config=generation_config,
            input_ids_seq_length=input_ids_length,
            encoder_input_ids=input_ids,
            prefix_allowed_tokens_fn=None,
            logits_processor=logits_processor,
            device=input_ids.device,
        )

        # 9. prepare stopping criteria
        stopping_criteria = self._get_stopping_criteria(
            generation_config=generation_config, stopping_criteria=stopping_criteria
        )

        if is_greedy_gen_mode:
            if generation_config.num_return_sequences > 1:
                raise ValueError(
                    "num_return_sequences has to be 1 when doing greedy search, "
                    f"but is {generation_config.num_return_sequences}."
                )

            # 10. run greedy search
            outputs = self._sample(
                input_ids,
                logits_processor=logits_processor,
                stopping_criteria=stopping_criteria,
                generation_config=generation_config,
                synced_gpus=synced_gpus,
                streamer=streamer,
                **model_kwargs,
            )

        elif is_sample_gen_mode:
            # 10. prepare logits warper
            logits_warper = self._get_logits_warper(generation_config, device=input_ids.device)

            # expand input_ids with `num_return_sequences` additional sequences per batch
            input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=input_ids,
                expand_size=generation_config.num_return_sequences,
                **model_kwargs,
            )

            # 11. run sample
            outputs = self._sample(
                input_ids,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                stopping_criteria=stopping_criteria,
                generation_config=generation_config,
                synced_gpus=synced_gpus,
                streamer=streamer,
                **model_kwargs,
            )

        else:
            raise ValueError(
                "Got incompatible mode for generation, should be one of greedy or sampling. "
                "Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`."
            )

        if generation_config.return_dict_in_generate:
            output_ids = outputs.sequences
        else:
            output_ids = outputs

        # apply the pattern mask to the final ids
        output_ids = self.apply_delay_pattern_mask(output_ids, model_kwargs["delay_pattern_mask"])

        # revert the pattern delay mask by filtering the eos and bos token ids from the delay pattern mask
        _, mask = self.build_delay_pattern_mask(
            input_ids,
            bos_token_id=generation_config.bos_token_id,
            pad_token_id=generation_config.pad_token_id,
            max_length=output_ids.shape[1],
        )

        mask = (mask != generation_config._bos_token_tensor) & (mask != generation_config._pad_token_tensor)
        output_ids = output_ids[mask].reshape(batch_size, self.num_codebooks, -1)

        if generation_config.return_dict_in_generate:
            outputs.sequences = output_ids
            return outputs
        else:
            return output_ids


@add_start_docstrings(
    "The composite Parler-TTS model with a text encoder, audio encoder and ParlerTTS decoder, "
    "for music generation tasks with one or both of text and audio prompts.",
    MUSICGEN_START_DOCSTRING,
)
class ParlerTTSForConditionalGeneration(PreTrainedModel):
    config_class = ParlerTTSConfig
    base_model_prefix = "encoder_decoder"
    main_input_name = "input_ids"
    supports_gradient_checkpointing = True
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True
    _supports_static_cache = True

    def __init__(
        self,
        config: Optional[ParlerTTSConfig] = None,
        text_encoder: Optional[PreTrainedModel] = None,
        audio_encoder: Optional[PreTrainedModel] = None,
        decoder: Optional[ParlerTTSForCausalLM] = None,
    ):
        if config is None and (text_encoder is None or audio_encoder is None or decoder is None):
            raise ValueError(
                "Either a configuration has to be provided, or all three of text encoder, audio encoder and Parler-TTS decoder."
            )
        if config is None:
            config = ParlerTTSConfig.from_sub_models_config(text_encoder.config, audio_encoder.config, decoder.config)
        else:
            if not isinstance(config, self.config_class):
                raise ValueError(f"Config: {config} has to be of type {self.config_class}")

        if config.decoder.cross_attention_hidden_size is not None:
            if config.decoder.cross_attention_hidden_size != config.text_encoder.hidden_size:
                raise ValueError(
                    "If `cross_attention_hidden_size` is specified in the Parler-TTS decoder's configuration, it has to be equal"
                    f" to the text encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for"
                    f" `config.decoder.cross_attention_hidden_size` and {config.text_encoder.hidden_size} for"
                    " `config.text_encoder.hidden_size`."
                )

        # initialize with config
        super().__init__(config)

        if text_encoder is None:
            from transformers.models.auto.modeling_auto import AutoModelForTextEncoding

            text_encoder = AutoModelForTextEncoding.from_config(config.text_encoder)

        if audio_encoder is None:
            from transformers.models.auto.modeling_auto import AutoModel

            audio_encoder = AutoModel.from_config(config.audio_encoder)

        if decoder is None:
            decoder = ParlerTTSForCausalLM._from_config(config.decoder)

        self.text_encoder = text_encoder
        self.audio_encoder = audio_encoder
        self.decoder = decoder

        if self.text_encoder.config.to_dict() != self.config.text_encoder.to_dict():
            logger.warning(
                f"Config of the text_encoder: {self.text_encoder.__class__} is overwritten by shared text_encoder config:"
                f" {self.config.text_encoder}"
            )
        if self.audio_encoder.config.to_dict() != self.config.audio_encoder.to_dict():
            logger.warning(
                f"Config of the audio_encoder: {self.audio_encoder.__class__} is overwritten by shared audio_encoder config:"
                f" {self.config.audio_encoder}"
            )
        if self.decoder.config.to_dict() != self.config.decoder.to_dict():
            logger.warning(
                f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:"
                f" {self.config.decoder}"
            )

        # make sure that the individual model's config refers to the shared config
        # so that the updates to the config will be synced
        self.config.text_encoder._attn_implementation = self.text_encoder.config._attn_implementation
        self.config.audio_encoder._attn_implementation = self.audio_encoder.config._attn_implementation
        self.config.decoder._attn_implementation = self.decoder.config._attn_implementation
        self.text_encoder.config = self.config.text_encoder
        self.audio_encoder.config = self.config.audio_encoder
        self.decoder.config = self.config.decoder

        # text encoder outputs might need to be projected to different dimension for decoder
        if (
            self.text_encoder.config.hidden_size != self.decoder.config.hidden_size
            and self.decoder.config.cross_attention_hidden_size is None
        ):
            self.enc_to_dec_proj = nn.Linear(self.text_encoder.config.hidden_size, self.decoder.config.hidden_size)

        # prompt embeddings
        self.embed_prompts = nn.Embedding(config.vocab_size, self.decoder.config.hidden_size)

        self.prompt_cross_attention = config.prompt_cross_attention
        if config.prompt_cross_attention:
            self.embed_positions = ParlerTTSSinusoidalPositionalEmbedding(
                config.decoder.max_position_embeddings,
                config.decoder.hidden_size,
            )

        if self.text_encoder.get_output_embeddings() is not None:
            raise ValueError(
                f"The encoder {self.text_encoder} should not have a LM Head. Please use a model without and LM Head"
            )

        decoder_signature = set(inspect.signature(self.decoder.forward).parameters.keys())
        if "encoder_hidden_states" not in decoder_signature:
            raise ValueError(
                "The selected decoder is not prepared for the encoder hidden states to be passed. Please see the "
                "following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350"
            )

        audio_encoder_signature = set(inspect.signature(self.audio_encoder.decode).parameters.keys())
        self.use_audio_scales = "audio_scales" in audio_encoder_signature

        self.use_4dim_audio_codes = False
        audio_type = audio_encoder.config.model_type
        if audio_type in {"encodec", "dac_on_the_hub"} or (audio_type == "dac" and not is_dac_integrated_to_transformers):
            self.use_4dim_audio_codes = True 
 
        # Initialize projection and embedding layers and tie text encoder and decoder weights if set accordingly
        self.post_init()

    def _init_weights(self, module):
        std = self.decoder.config.initializer_factor
        if isinstance(module, (nn.Linear, nn.Conv1d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    def tie_weights(self):
        # tie text encoder & decoder if needed
        if self.config.tie_encoder_decoder:
            # tie text encoder and decoder base model
            decoder_base_model_prefix = self.decoder.base_model_prefix
            self._tie_encoder_decoder_weights(
                self.text_encoder, self.decoder._modules[decoder_base_model_prefix], self.decoder.base_model_prefix
            )

    def get_audio_encoder(self):
        return self.audio_encoder

    def get_text_encoder(self):
        return self.text_encoder

    def get_encoder(self):
        # get the text encoder to compute the encoder hidden-states for generation
        return self.get_text_encoder()

    def get_decoder(self):
        return self.decoder

    def get_input_embeddings(self):
        return self.text_encoder.get_input_embeddings()

    def get_output_embeddings(self):
        return self.decoder.get_output_embeddings()

    def set_output_embeddings(self, new_embeddings):
        return self.decoder.set_output_embeddings(new_embeddings)

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r"""
        Example:

        ```python
        >>> from parler_tts import ParlerTTSForConditionalGeneration

        >>> model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1")
        ```"""

        # At the moment fast initialization is not supported for composite models
        if kwargs.get("_fast_init", False):
            logger.warning(
                "Fast initialization is currently not supported for ParlerTTSForConditionalGeneration. "
                "Falling back to slow initialization..."
            )
        kwargs["_fast_init"] = False

        return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)

    @classmethod
    def from_sub_models_pretrained(
        cls,
        text_encoder_pretrained_model_name_or_path: str = None,
        audio_encoder_pretrained_model_name_or_path: str = None,
        decoder_pretrained_model_name_or_path: str = None,
        *model_args,
        **kwargs,
    ) -> PreTrainedModel:
        r"""
        Instantiate a text encoder, an audio encoder, and a Parler-TTS decoder from one, two or three base classes of the
        library from pretrained model checkpoints.


        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
        the model, you need to first set it back in training mode with `model.train()`.

        Params:
            text_encoder_pretrained_model_name_or_path (`str`, *optional*):
                Information necessary to initiate the text encoder. Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids can be located at the root-level, like `t5-base`, or namespaced under a user or
                      organization name, like `google/flan-t5-base.
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.

            audio_encoder_pretrained_model_name_or_path (`str`, *optional*):
                Information necessary to initiate the audio encoder. Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a
                      user or organization name, like `facebook/encodec_24khz`.
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.

            decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`):
                Information necessary to initiate the decoder. Can be either:

                    - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
                      Valid model ids can be located at the root-level, like `gpt2`, or namespaced under a user or
                      organization name, like `parler-tts/parler-tts-mini-v1`.
                    - A path to a *directory* containing model weights saved using
                      [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.

            model_args (remaining positional arguments, *optional*):
                All remaining positional arguments will be passed to the underlying model's `__init__` method.

            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
                `output_attentions=True`).

                - To update the text encoder configuration, use the prefix *text_encoder_* for each configuration
                  parameter.
                - To update the audio encoder configuration, use the prefix *audio_encoder_* for each configuration
                  parameter.
                - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter.
                - To update the parent model configuration, do not use a prefix for each configuration parameter.

                Behaves differently depending on whether a `config` is provided or automatically loaded.

        Example:

        ```python
        >>> from parler_tts import ParlerTTSForConditionalGeneration

        >>> # initialize a parler_tts model from a t5 text encoder, encodec audio encoder, and parler_tts decoder
        >>> model = ParlerTTSForConditionalGeneration.from_sub_models_pretrained(
        ...     text_encoder_pretrained_model_name_or_path="t5-base",
        ...     audio_encoder_pretrained_model_name_or_path="facebook/encodec_24khz",
        ...     decoder_pretrained_model_name_or_path="parler-tts/parler-tts-mini-v1",
        ... )
        >>> # saving model after fine-tuning
        >>> model.save_pretrained("./parler_tts-ft")
        >>> # load fine-tuned model
        >>> model = ParlerTTSForConditionalGeneration.from_pretrained("./parler_tts-ft")
        ```"""

        kwargs_text_encoder = {
            argument[len("text_encoder_") :]: value
            for argument, value in kwargs.items()
            if argument.startswith("text_encoder_")
        }

        kwargs_audio_encoder = {
            argument[len("audio_encoder_") :]: value
            for argument, value in kwargs.items()
            if argument.startswith("audio_encoder_")
        }

        kwargs_decoder = {
            argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
        }

        # remove text encoder, audio encoder and decoder kwargs from kwargs
        for key in kwargs_text_encoder.keys():
            del kwargs["text_encoder_" + key]
        for key in kwargs_audio_encoder.keys():
            del kwargs["audio_encoder_" + key]
        for key in kwargs_decoder.keys():
            del kwargs["decoder_" + key]

        # Load and initialize the encoder and decoder
        # The distinction between encoder and decoder at the model level is made
        # by the value of the flag `is_decoder` that we need to set correctly.
        text_encoder = kwargs_text_encoder.pop("model", None)
        if text_encoder is None:
            if text_encoder_pretrained_model_name_or_path is None:
                raise ValueError(
                    "If `text_encoder_model` is not defined as an argument, a `text_encoder_pretrained_model_name_or_path` has "
                    "to be defined."
                )

            if "config" not in kwargs_text_encoder:
                encoder_config, kwargs_text_encoder = AutoConfig.from_pretrained(
                    text_encoder_pretrained_model_name_or_path, **kwargs_text_encoder, return_unused_kwargs=True
                )

                if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
                    logger.info(
                        f"Initializing {text_encoder_pretrained_model_name_or_path} as a text_encoder model "
                        "from a decoder model. Cross-attention and casual mask are disabled."
                    )
                    encoder_config.is_decoder = False
                    encoder_config.add_cross_attention = False

                kwargs_text_encoder["config"] = encoder_config

            text_encoder = AutoModelForTextEncoding.from_pretrained(
                text_encoder_pretrained_model_name_or_path, *model_args, **kwargs_text_encoder
            )

        audio_encoder = kwargs_audio_encoder.pop("model", None)
        if audio_encoder is None:
            if audio_encoder_pretrained_model_name_or_path is None:
                raise ValueError(
                    "If `audio_encoder_model` is not defined as an argument, an `audio_encoder_pretrained_model_name_or_path` has "
                    "to be defined."
                )

            if "config" not in kwargs_audio_encoder:
                encoder_config, kwargs_audio_encoder = AutoConfig.from_pretrained(
                    audio_encoder_pretrained_model_name_or_path, **kwargs_audio_encoder, return_unused_kwargs=True
                )

                if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True:
                    logger.info(
                        f"Initializing {audio_encoder_pretrained_model_name_or_path} as an audio_encoder model "
                        "from a decoder model. Cross-attention and casual mask are disabled."
                    )
                    encoder_config.is_decoder = False
                    encoder_config.add_cross_attention = False

                kwargs_audio_encoder["config"] = encoder_config

            audio_encoder = AutoModel.from_pretrained(
                audio_encoder_pretrained_model_name_or_path, *model_args, **kwargs_audio_encoder
            )

        decoder = kwargs_decoder.pop("model", None)
        if decoder is None:
            if decoder_pretrained_model_name_or_path is None:
                raise ValueError(
                    "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has "
                    "to be defined."
                )

            if "config" not in kwargs_decoder:
                decoder_config, kwargs_decoder = ParlerTTSDecoderConfig.from_pretrained(
                    decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True
                )

                if isinstance(decoder_config, ParlerTTSConfig):
                    decoder_config = decoder_config.decoder

                if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False:
                    logger.info(
                        f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention"
                        f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if"
                        f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers."
                    )
                    decoder_config.is_decoder = True
                    decoder_config.add_cross_attention = True

                kwargs_decoder["config"] = decoder_config

            if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False:
                logger.warning(
                    f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. "
                    f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, "
                    "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` "
                    "passed to `.from_sub_models_pretrained(...)` are set to `True` or do not pass a "
                    "`decoder_config` to `.from_sub_models_pretrained(...)`"
                )

            decoder = ParlerTTSForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder)

        # instantiate config with corresponding kwargs
        config = ParlerTTSConfig.from_sub_models_config(
            text_encoder.config, audio_encoder.config, decoder.config, **kwargs
        )
        return cls(text_encoder=text_encoder, audio_encoder=audio_encoder, decoder=decoder, config=config)

    @add_start_docstrings_to_model_forward(MUSICGEN_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=ParlerTTSSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.BoolTensor] = None,
        input_values: Optional[torch.FloatTensor] = None,
        padding_mask: Optional[torch.BoolTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None,
        past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        prompt_input_ids: Optional[torch.FloatTensor] = None,
        prompt_attention_mask: Optional[torch.LongTensor] = None,
        prompt_hidden_states: Optional[torch.FloatTensor] = None,
        decoder_position_ids: Optional[torch.LongTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        loss_reduction: str = "mean",
        **kwargs,
    ) -> Union[Tuple, ParlerTTSSeq2SeqLMOutput]:
        r"""
        Returns:

        Examples:
        ```python
        >>> from transformers import AutoProcessor, ParlerTTSForConditionalGeneration
        >>> import torch

        >>> processor = AutoProcessor.from_pretrained("parler-tts/parler-tts-mini-v1")
        >>> model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1")

        >>> inputs = processor(
        ...     text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"],
        ...     padding=True,
        ...     return_tensors="pt",
        ... )

        >>> pad_token_id = model.generation_config.pad_token_id
        >>> decoder_input_ids = (
        ...     torch.ones((inputs.input_ids.shape[0] * model.decoder.num_codebooks, 1), dtype=torch.long)
        ...     * pad_token_id
        ... )

        >>> logits = model(**inputs, decoder_input_ids=decoder_input_ids).logits
        >>> logits.shape  # (bsz * num_codebooks, tgt_len, vocab_size)
        torch.Size([8, 1, 2048])
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        kwargs_text_encoder = {
            argument[len("text_encoder_")]: value
            for argument, value in kwargs.items()
            if argument.startswith("text_encoder_")
        }

        kwargs_audio_encoder = {
            argument[len("audio_encoder_")]: value
            for argument, value in kwargs.items()
            if argument.startswith("audio_encoder_")
        }

        kwargs_decoder = {
            argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_")
        }

        if prompt_hidden_states is None:
            if prompt_input_ids is not None:
                prompt_hidden_states = self.embed_prompts(prompt_input_ids)

        if encoder_outputs is None:
            encoder_outputs = self.text_encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                **kwargs_text_encoder,
            )
            encoder_hidden_states = encoder_outputs[0]

            # optionally project encoder_hidden_states
            if (
                self.text_encoder.config.hidden_size != self.decoder.config.hidden_size
                and self.decoder.config.cross_attention_hidden_size is None
            ):
                encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)

            if attention_mask is not None:
                encoder_hidden_states = encoder_hidden_states * attention_mask[..., None]

            if prompt_hidden_states is not None and self.prompt_cross_attention:
                # add sinusoidal positional embedding
                positions = self.embed_positions(prompt_hidden_states, 0)
                prompt_hidden_states = prompt_hidden_states + positions.to(prompt_hidden_states.device)

                if prompt_attention_mask is not None and attention_mask is None:
                    attention_mask = torch.ones(
                        encoder_hidden_states.shape[:2], device=self.device, dtype=prompt_attention_mask.dtype
                    )
                elif attention_mask is not None and prompt_attention_mask is None:
                    prompt_attention_mask = torch.ones(
                        prompt_hidden_states.shape[:2], device=self.device, dtype=attention_mask.dtype
                    )

                # concatenate text description states with prompt description states
                encoder_hidden_states = torch.cat([encoder_hidden_states, prompt_hidden_states], dim=1)
                if prompt_attention_mask is not None:
                    attention_mask = torch.cat([attention_mask, prompt_attention_mask], dim=1)

                prompt_hidden_states = None
                prompt_attention_mask = None

            encoder_outputs["last_hidden_state"] = encoder_hidden_states

        elif isinstance(encoder_outputs, tuple):
            encoder_outputs = BaseModelOutput(*encoder_outputs)

        encoder_hidden_states = encoder_outputs.last_hidden_state

        if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None):
            decoder_input_ids = shift_tokens_right(
                labels, self.config.pad_token_id, self.config.decoder_start_token_id
            ).transpose(1, 2)

        elif decoder_input_ids is None and decoder_inputs_embeds is None:
            audio_encoder_outputs = self.audio_encoder(
                input_values=input_values,
                padding_mask=padding_mask,
                **kwargs_audio_encoder,
            )
            audio_codes = audio_encoder_outputs.audio_codes
            frames, bsz, codebooks, seq_len = audio_codes.shape
            if frames != 1:
                raise ValueError(
                    f"Expected 1 frame in the audio code outputs, got {frames} frames. Ensure chunking is "
                    "disabled by setting `chunk_length=None` in the audio encoder."
                )

            if self.config.decoder.audio_channels == 2 and audio_codes.shape[2] == self.decoder.num_codebooks // 2:
                # mono input through encodec that we convert to stereo
                audio_codes = audio_codes.repeat_interleave(2, dim=2)

            decoder_input_ids = audio_codes[0, ...].reshape(bsz * self.decoder.num_codebooks, seq_len)

        # Decode
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            position_ids=decoder_position_ids,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=attention_mask,
            prompt_hidden_states=prompt_hidden_states,
            prompt_attention_mask=prompt_attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            use_cache=use_cache,
            past_key_values=past_key_values,
            return_dict=return_dict,
            labels=labels,
            cache_position=cache_position,
            loss_reduction=loss_reduction,
            **kwargs_decoder,
        )

        if not return_dict:
            return decoder_outputs + (encoder_hidden_states,)

        return ParlerTTSSeq2SeqLMOutput(
            loss=decoder_outputs.loss,
            logits=decoder_outputs.logits,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
            per_codebook_losses=decoder_outputs.per_codebook_losses,
        )

    def prepare_inputs_for_generation(
        self,
        decoder_input_ids,
        past_key_values=None,
        attention_mask=None,
        head_mask=None,
        decoder_attention_mask=None,
        decoder_head_mask=None,
        prompt_hidden_states=None,
        prompt_attention_mask=None,
        cross_attn_head_mask=None,
        use_cache=None,
        encoder_outputs=None,
        decoder_delay_pattern_mask=None,
        cache_position=None,
        inputs_embeds=None,
        **kwargs,
    ):
        if decoder_delay_pattern_mask is None:
            decoder_input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask(
                decoder_input_ids,
                bos_token_id=self.generation_config.bos_token_id,
                pad_token_id=self.generation_config.pad_token_id,
                max_length=self.generation_config.max_length,
            )

        # apply the delay pattern mask
        decoder_input_ids = self.decoder.apply_delay_pattern_mask(decoder_input_ids, decoder_delay_pattern_mask)

        past_length = 0
        if past_key_values is not None:
            if isinstance(past_key_values, EncoderDecoderCache):
                past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
                if past_key_values.get_seq_length() > 0:
                    # we only want to use prompt signal in the 1st generation step
                    prompt_hidden_states = None
            else:
                past_length = past_key_values[0][0].shape[2]
                # we only want to use prompt signal in the 1st generation step
                prompt_hidden_states = None

            # Some generation methods already pass only the last input ID
            if decoder_input_ids.shape[1] > past_length:
                remove_prefix_length = past_length
            else:
                # Default to old behavior: keep only final ID
                remove_prefix_length = decoder_input_ids.shape[1] - 1

            decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]

        if cache_position is None:
            cache_position = torch.arange(
                past_length, past_length + decoder_input_ids.shape[1], device=decoder_input_ids.device
            )
        elif use_cache:
            cur_len = decoder_input_ids.shape[1]
            if prompt_hidden_states is not None and not self.prompt_cross_attention:
                # meaning we are in 1st generation step and prompt_hidden_state will be prepended
                cur_len += prompt_hidden_states.shape[1]

            cache_position = cache_position[-cur_len:]

        if decoder_attention_mask is None and prompt_attention_mask is not None:
            input = decoder_input_ids.reshape(-1, self.decoder.num_codebooks, decoder_input_ids.shape[-1])
            bsz, _, seq_len = input.shape
            input_shape = (bsz, seq_len)

            past_key_values_length = 0
            if cache_position is not None:
                past_key_values_length = cache_position[0]
            elif past_key_values is not None:
                past_key_values_length = past_key_values.get_seq_length()

            logger.warning_once(
                "`prompt_attention_mask` is specified but `attention_mask` is not. A full `attention_mask` will be created. Make sure this is the intended behaviour."
            )
            if past_key_values is None or (
                isinstance(past_key_values, EncoderDecoderCache) and past_key_values.get_seq_length() == 0
            ):
                decoder_attention_mask = torch.ones(input_shape, device=self.device, dtype=decoder_input_ids.dtype)
            elif prompt_attention_mask is not None:
                # In the generation case of `prompt_cross_attention=True`, we need to recreate an attention mask from scratch
                # to be able to prepend the prompt attention mask.
                # Since we generate token per token, we can recompute the generated length from the information we have.
                generated_length = past_key_values_length - prompt_attention_mask.shape[1] + 1
                decoder_attention_mask = torch.ones(
                    (input_shape[0], generated_length), device=self.device, dtype=prompt_attention_mask.dtype
                )

        return {
            "input_ids": None,  # encoder_outputs is defined. input_ids not needed
            "encoder_outputs": encoder_outputs,
            "past_key_values": past_key_values,
            "decoder_input_ids": decoder_input_ids.contiguous(),
            "attention_mask": attention_mask,
            "decoder_attention_mask": decoder_attention_mask,
            "head_mask": head_mask,
            "decoder_head_mask": decoder_head_mask,
            "cross_attn_head_mask": cross_attn_head_mask,
            "prompt_hidden_states": prompt_hidden_states,
            "prompt_attention_mask": prompt_attention_mask,
            "use_cache": use_cache,
            "cache_position": cache_position,
            "inputs_embeds": inputs_embeds,
        }

    def _prepare_decoder_input_ids_for_generation(
        self,
        batch_size: int,
        model_input_name: str,
        model_kwargs: Dict[str, torch.Tensor],
        decoder_start_token_id: int = None,
        bos_token_id: int = None,
        device: torch.device = None,
    ) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]:
        """Prepares `decoder_input_ids` for generation with encoder-decoder models"""

        # 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming,
        # we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input.
        if model_kwargs is not None and "decoder_input_ids" in model_kwargs:
            decoder_input_ids = model_kwargs.pop("decoder_input_ids")
        elif "input_ids" in model_kwargs and model_input_name != "input_ids":
            decoder_input_ids = model_kwargs.pop("input_ids")
        else:
            decoder_input_ids = None

        # 2. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that.
        decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id)
        if device is None:
            device = self.device
        decoder_input_ids_start = (
            torch.ones((batch_size * self.decoder.num_codebooks, 1), dtype=torch.long, device=device)
            * decoder_start_token_id
        )

        # no user input -> use decoder_start_token_id as decoder_input_ids
        if decoder_input_ids is None:
            decoder_input_ids = decoder_input_ids_start

        # user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust
        # decoder_attention_mask if provided)
        elif (decoder_input_ids[..., 0] != decoder_start_token_id).all().item():
            decoder_input_ids = torch.cat([decoder_input_ids_start, decoder_input_ids], dim=-1)
            if "decoder_attention_mask" in model_kwargs:
                decoder_attention_mask = model_kwargs["decoder_attention_mask"]
                decoder_attention_mask = torch.cat(
                    (torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask),
                    dim=-1,
                )
                model_kwargs["decoder_attention_mask"] = decoder_attention_mask

        if not self.prompt_cross_attention:
            prompt_hidden_states = model_kwargs["prompt_hidden_states"]
            num_codebooks = self.decoder.num_codebooks
            input = decoder_input_ids.reshape(-1, num_codebooks, decoder_input_ids.shape[-1])
            inputs_embeds = sum(
                [
                    self.decoder.model.decoder.embed_tokens[codebook](input[:, codebook])
                    for codebook in range(num_codebooks)
                ]
            )
            inputs_embeds = torch.cat([prompt_hidden_states, inputs_embeds], dim=1)
            model_kwargs["inputs_embeds"] = inputs_embeds

        return decoder_input_ids, model_kwargs

    def _prepare_text_encoder_kwargs_for_generation(
        self,
        inputs_tensor: torch.Tensor,
        model_kwargs,
        model_input_name: Optional[str],
        generation_config: GenerationConfig,
    ) -> Dict[str, Any]:
        # 1. get text encoder
        encoder = self.get_text_encoder()
        # Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device
        # as the inputs.
        if hasattr(encoder, "_hf_hook"):
            encoder._hf_hook.io_same_device = True

        # 2. Prepare encoder args and encoder kwargs from model kwargs.
        irrelevant_prefix = ["decoder_", "cross_attn", "prompt_", "use_cache", "labels"]
        encoder_kwargs = {
            argument: value
            for argument, value in model_kwargs.items()
            if not any(argument.startswith(p) for p in irrelevant_prefix)
        }
        encoder_signature = set(inspect.signature(encoder.forward).parameters)
        encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature
        if not encoder_accepts_wildcard:
            encoder_kwargs = {
                argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature
            }
        encoder_kwargs["output_attentions"] = generation_config.output_attentions
        encoder_kwargs["output_hidden_states"] = generation_config.output_hidden_states

        # 3. make sure that encoder returns `ModelOutput`
        model_input_name = model_input_name if model_input_name is not None else self.text_encoder.main_input_name
        encoder_kwargs["return_dict"] = True
        encoder_kwargs[model_input_name] = inputs_tensor
        last_hidden_state = encoder(**encoder_kwargs).last_hidden_state

        # we optionnally project last_hidden_state to avoid recomputing every time
        encoder_hidden_states = last_hidden_state
        if (
            self.text_encoder.config.hidden_size != self.decoder.config.hidden_size
            and self.decoder.config.cross_attention_hidden_size is None
        ):
            encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states)

        if model_kwargs["attention_mask"] is not None:
            encoder_hidden_states = encoder_hidden_states * model_kwargs["attention_mask"][..., None]

        model_kwargs["encoder_outputs"] = BaseModelOutput(last_hidden_state=encoder_hidden_states)

        return model_kwargs

    def _prepare_prompt_kwargs_for_generation(self, prompt_input_ids, model_kwargs):
        prompt_hidden_states = self.embed_prompts(prompt_input_ids)

        if self.prompt_cross_attention:
            # add sinusoidal positional embedding
            positions = self.embed_positions(prompt_hidden_states, 0)
            prompt_hidden_states = prompt_hidden_states + positions.to(prompt_hidden_states.device)

            attention_mask = model_kwargs.get("attention_mask", None)
            prompt_attention_mask = model_kwargs.get("prompt_attention_mask", None)
            encoder_hidden_states = model_kwargs["encoder_outputs"].last_hidden_state

            if prompt_attention_mask is not None and attention_mask is None:
                attention_mask = torch.ones(
                    encoder_hidden_states.shape[:2], device=self.device, dtype=prompt_attention_mask.dtype
                )
            elif attention_mask is not None and prompt_attention_mask is None:
                prompt_attention_mask = torch.ones(
                    prompt_hidden_states.shape[:2], device=self.device, dtype=attention_mask.dtype
                )

            # concatenate text description states with prompt description states
            encoder_hidden_states = torch.cat([encoder_hidden_states, prompt_hidden_states], dim=1)
            if prompt_attention_mask is not None:
                attention_mask = torch.cat([attention_mask, prompt_attention_mask], dim=1)

            model_kwargs["encoder_outputs"].last_hidden_state = encoder_hidden_states
            model_kwargs["attention_mask"] = attention_mask

            # in this case, since we already concatenated the prompt hidden states and attention mask, we don't need them anymore.
            model_kwargs["prompt_hidden_states"] = None
            model_kwargs["prompt_attention_mask"] = None
        else:
            model_kwargs["prompt_hidden_states"] = prompt_hidden_states
            # we're keeping the prompt attention mask because it has to be prepended to the decoder attention mask on the fly
        return model_kwargs

    def _prepare_audio_encoder_kwargs_for_generation(
        self, input_values, model_kwargs, model_input_name: Optional[str] = None
    ):
        # 1. get audio encoder
        encoder = self.get_audio_encoder()
        # Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device
        # as the inputs.
        if hasattr(encoder, "_hf_hook"):
            encoder._hf_hook.io_same_device = True

        # 2. Prepare encoder args and encoder kwargs from model kwargs.
        irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"]
        encoder_kwargs = {
            argument: value
            for argument, value in model_kwargs.items()
            if not any(argument.startswith(p) for p in irrelevant_prefix)
        }
        encoder_signature = set(inspect.signature(encoder.forward).parameters)
        encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature
        if not encoder_accepts_wildcard:
            encoder_kwargs = {
                argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature
            }

        # 3. make sure that encoder returns `ModelOutput`
        model_input_name = model_input_name if model_input_name is not None else self.audio_encoder.main_input_name
        encoder_kwargs["return_dict"] = True
        
        if "num_quantizers" in encoder_signature:
            encoder_kwargs["num_quantizers"] = self.config.decoder.num_codebooks
        elif "num_codebooks" in encoder_signature:
            encoder_kwargs["num_codebooks"] = self.config.decoder.num_codebooks
        elif "n_quantizers" in encoder_signature:
            encoder_kwargs["n_quantizers"] = self.config.decoder.num_codebooks

        encoder_kwargs[model_input_name] = input_values
        audio_encoder_outputs = encoder.encode(**encoder_kwargs)
        audio_codes = audio_encoder_outputs.audio_codes
        audio_scales = audio_encoder_outputs.get("audio_scales")

        if audio_codes.ndim == 3:
            bsz, codebooks, seq_len = audio_codes.shape
            decoder_input_ids = audio_codes.reshape(bsz * self.decoder.num_codebooks, seq_len)
        else:
            frames, bsz, codebooks, seq_len = audio_codes.shape

            if frames != 1:
                raise ValueError(
                    f"Expected 1 frame in the audio code outputs, got {frames} frames. Ensure chunking is "
                    "disabled by setting `chunk_length=None` in the audio encoder."
                )

            decoder_input_ids = audio_codes[0, ...].reshape(bsz * self.decoder.num_codebooks, seq_len)

        model_kwargs["decoder_input_ids"] = decoder_input_ids
        if audio_scales is not None:
            model_kwargs["audio_scales"] = audio_scales

        return model_kwargs

    def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
        return shift_tokens_right(
            labels, self.config.decoder.pad_token_id, self.config.decoder.bos_token_id
        ).transpose(1, 2)

    def resize_token_embeddings(self, *args, **kwargs):
        raise NotImplementedError(
            "Resizing the embedding layers via the EncoderDecoderModel directly is not supported. Please use the"
            " respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or"
            " model.decoder.resize_token_embeddings(...))"
        )

    def _maybe_initialize_input_ids_for_generation(
        self,
        inputs: Optional[torch.Tensor] = None,
        bos_token_id: Optional[int] = None,
        model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
    ) -> torch.LongTensor:
        """Initializes input ids for generation, if necessary."""
        if inputs is not None:
            return inputs

        encoder_outputs = model_kwargs.get("encoder_outputs")
        if encoder_outputs is not None:
            # make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding
            shape = encoder_outputs[0].size()[:-1]
            return torch.ones(shape, dtype=torch.long, device=self.device) * -100

        if bos_token_id is None:
            raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.")

        # If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with
        # soft-prompting or in multimodal implementations built on top of decoder-only language models.
        batch_size = 1
        for value in model_kwargs.values():
            if isinstance(value, torch.Tensor):
                batch_size = value.shape[0]
                break
        return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id

    def _get_decoder_start_token_id(
        self, decoder_start_token_id: Union[int, List[int]] = None, bos_token_id: int = None
    ) -> int:
        decoder_start_token_id = (
            decoder_start_token_id
            if decoder_start_token_id is not None
            else self.generation_config.decoder_start_token_id
        )
        bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id

        if decoder_start_token_id is not None:
            return decoder_start_token_id
        elif bos_token_id is not None:
            return bos_token_id
        raise ValueError(
            "`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
        )

    def _get_cache(self, cache_implementation: str, max_batch_size: int, max_cache_len: int, model_kwargs) -> Cache:
        """
        Sets a cache for `generate`, that will persist across calls. A new cache will only be initialized a
        new `generate` call requires a larger cache.

        Returns the resulting cache object.
        """
        cache_cls: Cache = NEED_SETUP_CACHE_CLASSES_MAPPING[cache_implementation]
        requires_cross_attention_cache = (
            self.config.is_encoder_decoder or model_kwargs.get("encoder_outputs") is not None
        )

        if hasattr(self, "_cache"):
            cache_to_check = self._cache.self_attention_cache if requires_cross_attention_cache else self._cache

        if cache_implementation == "sliding_window":
            max_cache_len = min(self.config.sliding_window, max_cache_len)

        need_new_cache = (
            not hasattr(self, "_cache")
            or (not isinstance(cache_to_check, cache_cls))
            or cache_to_check.max_batch_size != max_batch_size
            or cache_to_check.max_cache_len < max_cache_len
        )

        if requires_cross_attention_cache and hasattr(self, "_cache"):
            need_new_cache = (
                need_new_cache
                or self._cache.cross_attention_cache.max_cache_len != model_kwargs["encoder_outputs"][0].shape[1]
            )

        if need_new_cache:
            if hasattr(self.config, "_pre_quantization_dtype"):
                cache_dtype = self.config._pre_quantization_dtype
            else:
                cache_dtype = self.dtype
            cache_kwargs = {
                "config": self.config.decoder,
                "max_batch_size": max_batch_size,
                "max_cache_len": max_cache_len,
                "device": self.device,
                "dtype": cache_dtype,
            }
            self._cache = cache_cls(**cache_kwargs)
            if requires_cross_attention_cache:
                encoder_kwargs = cache_kwargs.copy()
                encoder_kwargs["max_cache_len"] = model_kwargs["encoder_outputs"][0].shape[1]
                config_cross_attention_cache = copy.deepcopy(self.config.decoder)
                config_cross_attention_cache.update(
                    {"num_key_value_heads": self.config.decoder.num_cross_attention_key_value_heads}
                )
                encoder_kwargs["config"] = config_cross_attention_cache
                self._cache = EncoderDecoderCache(self._cache, cache_cls(**encoder_kwargs))
        else:
            self._cache.reset()
        return self._cache

    def freeze_encoders(self, freeze_text_encoder=True):
        if freeze_text_encoder:
            for param in self.text_encoder.parameters():
                param.requires_grad = False
            self.text_encoder._requires_grad = False

        for param in self.audio_encoder.parameters():
            param.requires_grad = False
        self.audio_encoder._requires_grad = False

    @torch.no_grad()
    def generate(
        self,
        inputs: Optional[torch.Tensor] = None,
        generation_config: Optional[GenerationConfig] = None,
        logits_processor: Optional[LogitsProcessorList] = None,
        stopping_criteria: Optional[StoppingCriteriaList] = None,
        synced_gpus: Optional[bool] = None,
        streamer: Optional["BaseStreamer"] = None,
        **kwargs,
    ):
        """

        Generates sequences of token ids for models with a language modeling head.

        <Tip warning={true}>

        Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
        model's default generation configuration. You can override any `generation_config` by passing the corresponding
        parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.

        For an overview of generation strategies and code examples, check out the [following
        guide](./generation_strategies).

        </Tip>

        Parameters:
            inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
                The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
                method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
                should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of
                `input_ids`, `input_values`, `input_features`, or `pixel_values`.
            generation_config (`~generation.GenerationConfig`, *optional*):
                The generation configuration to be used as base parametrization for the generation call. `**kwargs`
                passed to generate matching the attributes of `generation_config` will override them. If
                `generation_config` is not provided, the default will be used, which had the following loading
                priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
                configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
                default values, whose documentation should be checked to parameterize generation.
            logits_processor (`LogitsProcessorList`, *optional*):
                Custom logits processors that complement the default logits processors built from arguments and
                generation config. If a logit processor is passed that is already created with the arguments or a
                generation config an error is thrown. This feature is intended for advanced users.
            stopping_criteria (`StoppingCriteriaList`, *optional*):
                Custom stopping criteria that complement the default stopping criteria built from arguments and a
                generation config. If a stopping criteria is passed that is already created with the arguments or a
                generation config an error is thrown. This feature is intended for advanced users.
            synced_gpus (`bool`, *optional*, defaults to `False`):
                Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
            streamer (`BaseStreamer`, *optional*):
                Streamer object that will be used to stream the generated sequences. Generated tokens are passed
                through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
            kwargs (`Dict[str, Any]`, *optional*):
                Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
                forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
                specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.

        Return:
            [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
            or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`.

                If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
                [`~utils.ModelOutput`] types are:

                    - [`~generation.GenerateDecoderOnlyOutput`],
                    - [`~generation.GenerateBeamDecoderOnlyOutput`]

                If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
                [`~utils.ModelOutput`] types are:

                    - [`~generation.GenerateEncoderDecoderOutput`],
                    - [`~generation.GenerateBeamEncoderDecoderOutput`]
        """
        # 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects
        if generation_config is None:
            generation_config = self.generation_config

        generation_config = copy.deepcopy(generation_config)
        model_kwargs = generation_config.update(**kwargs)  # All unused kwargs must be model kwargs
        generation_config.validate()
        self._validate_model_kwargs(model_kwargs.copy())

        if model_kwargs.get("encoder_outputs") is not None and type(model_kwargs["encoder_outputs"]) == tuple:
            # wrap the unconditional outputs as a BaseModelOutput for compatibility with the rest of generate
            model_kwargs["encoder_outputs"] = BaseModelOutput(last_hidden_state=model_kwargs["encoder_outputs"][0])

        # 2. Set generation parameters if not already defined
        requires_attention_mask = "encoder_outputs" not in model_kwargs
        kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None

        # 3. Define model inputs
        inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
            inputs, generation_config.bos_token_id, model_kwargs
        )
        batch_size = inputs_tensor.shape[0]
        self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=inputs_tensor.device)

        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList([ParlerTTSLogitsProcessor(generation_config.eos_token_id, self.decoder.num_codebooks, batch_size, inputs_tensor.device)])
        stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()

        # 4. Define other model kwargs
        model_kwargs["use_cache"] = generation_config.use_cache

        if model_kwargs.get("attention_mask", None) is None and requires_attention_mask:
            model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
                inputs_tensor, generation_config._pad_token_tensor, generation_config._eos_token_tensor
            )

        if "encoder_outputs" not in model_kwargs:
            # encoder_outputs are created and added to `model_kwargs`
            model_kwargs = self._prepare_text_encoder_kwargs_for_generation(
                inputs_tensor, model_kwargs, model_input_name, generation_config
            )

        if "prompt_hidden_states" not in model_kwargs and "prompt_input_ids" in model_kwargs:
            # `prompt_hidden_states` are created and added to `model_kwargs`
            model_kwargs = self._prepare_prompt_kwargs_for_generation(
                model_kwargs["prompt_input_ids"],
                model_kwargs,
            )

        if "decoder_input_ids" not in model_kwargs and "input_values" in model_kwargs:
            model_kwargs = self._prepare_audio_encoder_kwargs_for_generation(
                model_kwargs["input_values"],
                model_kwargs,
            )

        # 5. Prepare `input_ids` which will be used for auto-regressive generation
        input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
            batch_size=batch_size,
            model_input_name=model_input_name,
            model_kwargs=model_kwargs,
            decoder_start_token_id=generation_config._decoder_start_token_tensor,
            bos_token_id=generation_config._bos_token_tensor,
            device=inputs_tensor.device,
        )

        # 6. Prepare `max_length` depending on other stopping criteria.
        input_ids_length = input_ids.shape[-1]
        has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
        has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None
        generation_config = self._prepare_generated_length(
            generation_config=generation_config,
            has_default_max_length=has_default_max_length,
            has_default_min_length=has_default_min_length,
            model_input_name=model_input_name,
            inputs_tensor=inputs_tensor,
            input_ids_length=input_ids_length,
        )

        if generation_config.cache_implementation is not None and model_kwargs.get("past_key_values") is not None:
            raise ValueError(
                "Passing both `cache_implementation` (used to initialize certain caches) and `past_key_values` (a "
                "Cache object) is unsupported. Please use only one of the two."
            )
        elif generation_config.cache_implementation is not None:
            if generation_config.cache_implementation in NEED_SETUP_CACHE_CLASSES_MAPPING:
                if generation_config.cache_implementation == "static" and not self._supports_static_cache:
                    raise ValueError(
                        "This model does not support `cache_implementation='static'`. Please check the following "
                        "issue: https://github.com/huggingface/transformers/issues/28981"
                    )
                if not self.prompt_cross_attention:
                    # when we prepend prompt_hidden_state to inputs_embeds, max_cache_len needs to be actualised
                    # generation_config.max_length has already been increased by input_ids_length which is
                    # already counted in input_embeds_seq_length so we remove it
                    input_embeds_seq_length = model_kwargs["inputs_embeds"].shape[1]
                    max_cache_len = generation_config.max_length + input_embeds_seq_length - input_ids_length
                else:
                    max_cache_len = self.generation_config.max_length
                model_kwargs["past_key_values"] = self._get_cache(
                    generation_config.cache_implementation,
                    getattr(generation_config, "num_beams", 1) * batch_size,
                    max_cache_len,
                    model_kwargs,
                )
            elif generation_config.cache_implementation == "quantized":
                raise ValueError(
                    "This model does not support the quantized cache. If you want your model to support quantized "
                    "cache, please open an issue on the Parler-TTS repository https://github.com/huggingface/parler-tts"
                )
        # Use DynamicCache() instance by default. This will avoid back and forth from legacy format that
        # keeps copying the cache thus using much more memory
        elif generation_config.cache_implementation is None and self._supports_default_dynamic_cache():
            past = model_kwargs.get("past_key_values", None)
            requires_cross_attention_cache = (
                self.config.is_encoder_decoder or model_kwargs.get("encoder_outputs") is not None
            )
            if past is None:
                model_kwargs["past_key_values"] = (
                    DynamicCache()
                    if not requires_cross_attention_cache
                    else EncoderDecoderCache(DynamicCache(), DynamicCache())
                )
            elif isinstance(past, tuple):
                model_kwargs["past_key_values"] = (
                    DynamicCache.from_legacy_cache(past)
                    if not requires_cross_attention_cache
                    else EncoderDecoderCache.from_legacy_cache(past)
                )

        # build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Parler-TTS)
        delayed_input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask(
            input_ids,
            bos_token_id=generation_config._bos_token_tensor,
            pad_token_id=generation_config._pad_token_tensor,
            max_length=generation_config.max_length,
        )
        # stash the delay mask so that we don't have to recompute in each forward pass
        model_kwargs["decoder_delay_pattern_mask"] = decoder_delay_pattern_mask

        # input_ids are ready to be placed on the streamer (if used)
        if streamer is not None:
            streamer.put(delayed_input_ids.cpu())

        # 7. determine generation mode
        generation_mode = generation_config.get_generation_mode()

        # 8. prepare distribution pre_processing samplers
        logits_processor = self._get_logits_processor(
            generation_config=generation_config,
            input_ids_seq_length=input_ids_length,
            encoder_input_ids=inputs_tensor,
            prefix_allowed_tokens_fn=None,
            logits_processor=logits_processor,
            device=delayed_input_ids.device,
        )

        # 9. prepare stopping criteria
        stopping_criteria = self._get_stopping_criteria(
            generation_config=generation_config, stopping_criteria=stopping_criteria
        )

        if generation_mode in (GenerationMode.SAMPLE, GenerationMode.GREEDY_SEARCH):
            # expand input_ids with `num_return_sequences` additional sequences per batch
            delayed_input_ids, model_kwargs = self._expand_inputs_for_generation(
                input_ids=delayed_input_ids,
                expand_size=generation_config.num_return_sequences,
                is_encoder_decoder=self.config.is_encoder_decoder,
                **model_kwargs,
            )

            # 10. run sample
            outputs = self._sample(
                delayed_input_ids,
                logits_processor=logits_processor,
                stopping_criteria=stopping_criteria,
                generation_config=generation_config,
                synced_gpus=synced_gpus,
                streamer=streamer,
                **model_kwargs,
            )

        else:
            raise ValueError(
                "Got incompatible mode for generation, should be one of greedy or sampling. "
                "Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`."
            )

        if generation_config.return_dict_in_generate:
            output_ids = outputs.sequences
        else:
            output_ids = outputs

        # Apply the pattern mask to the final ids
        output_ids = self.decoder.apply_delay_pattern_mask(output_ids, model_kwargs["decoder_delay_pattern_mask"])

        # Revert the pattern delay mask by filtering the eos and bos token ids from the delay pattern mask
        _, mask = self.decoder.build_delay_pattern_mask(
            input_ids,
            bos_token_id=generation_config.bos_token_id,
            pad_token_id=generation_config.pad_token_id,
            max_length=output_ids.shape[1],
        )

        mask = (mask != generation_config.bos_token_id) & (mask != generation_config.pad_token_id)
        output_ids = output_ids[mask].reshape(batch_size, self.decoder.num_codebooks, -1)

        # append the frame dimension back to the audio codes
        output_ids = output_ids[None, ...]

        audio_decode_kwargs = {}
        if self.use_audio_scales:
            audio_scales = model_kwargs.get("audio_scales")
            if audio_scales is None:
                audio_scales = [None] * batch_size
            audio_decode_kwargs["audio_scales"] = audio_scales

        
        if not self.use_4dim_audio_codes:
            # remove chunk dim
            output_ids = output_ids.squeeze(0)
            
            
        decode_sequentially = (
            generation_config.bos_token_id in output_ids
            or generation_config.pad_token_id in output_ids
            or generation_config.eos_token_id in output_ids
        )
        if not decode_sequentially:
            output_values = self.audio_encoder.decode(
                audio_codes=output_ids,
                **audio_decode_kwargs,
            ).audio_values.squeeze(1)
            output_lengths = [audio.shape[0] for audio in output_values]
        else:
            output_values = []
            for sample_id in range(batch_size):
                sample = output_ids[:, sample_id] if self.use_4dim_audio_codes else output_ids[sample_id]
                sample_mask = (sample >= self.audio_encoder.config.codebook_size)
                sample_mask = (sample_mask.sum(dim=(0, 1)) == 0) if self.use_4dim_audio_codes else (sample_mask.sum(dim=0) == 0)
                single_audio_decode_kwargs = {}
                if self.use_audio_scales:
                    single_audio_decode_kwargs["audio_scales"] = [audio_decode_kwargs["audio_scales"][sample_id]]
                if sample_mask.sum() > 0:
                    sample = sample[:, :, sample_mask] if self.use_4dim_audio_codes else sample[:, sample_mask]
                    sample = self.audio_encoder.decode(audio_codes=sample[None, ...], **single_audio_decode_kwargs).audio_values
                    sample = sample if sample.ndim == 3 else sample.unsqueeze(0)
                    output_values.append(sample.transpose(0, 2))
                else:
                    output_values.append(torch.zeros((1, 1, 1)).to(self.device))
            output_lengths = [audio.shape[0] for audio in output_values]
            output_values = (
                torch.nn.utils.rnn.pad_sequence(output_values, batch_first=True, padding_value=0)
                .squeeze(-1)
                .squeeze(-1)
            )
        if generation_config.return_dict_in_generate:
            outputs["audios_length"] = output_lengths
            outputs.sequences = output_values
            return outputs
        else:
            return output_values

    def _get_initial_cache_position(self, input_ids, model_kwargs):
        """Calculates `cache_position` for the pre-fill stage based on `input_ids` and optionally past length"""
        # `torch.compile`-friendly `torch.arange` from a shape -- the lines below are equivalent to `torch.arange`
        if "inputs_embeds" in model_kwargs:
            cache_position = torch.ones_like(model_kwargs["inputs_embeds"][0, :, 0], dtype=torch.int64).cumsum(0) - 1
        else:
            cache_position = torch.ones_like(input_ids[0, :], dtype=torch.int64).cumsum(0) - 1

        past_length = 0
        if model_kwargs.get("past_key_values") is not None:
            cache = model_kwargs["past_key_values"]
            past_length = 0
            if not isinstance(cache, Cache):
                past_length = cache[0][0].shape[2]
            elif hasattr(cache, "get_seq_length") and cache.get_seq_length() is not None:
                past_length = cache.get_seq_length()

            # TODO(joao): this is not torch.compile-friendly, find a work-around. If the cache is not empty,
            # end-to-end compilation will yield bad results because `cache_position` will be incorrect.
            if not is_torchdynamo_compiling():
                cache_position = cache_position[past_length:]

        model_kwargs["cache_position"] = cache_position
        return model_kwargs