Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2024 and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Parler-TTS model configuration""" | |
from transformers import AutoConfig, logging | |
from transformers.configuration_utils import PretrainedConfig | |
from importlib.metadata import version | |
from packaging.version import Version | |
use_dac_on_the_hub = Version(version("transformers")) > Version("4.44.2dev") | |
logger = logging.get_logger(__name__) | |
PARLER_TTS_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"parler-tts/parler-tts-mini-v1": "https://huggingface.co/parler-tts/parler-tts-mini-v1/resolve/main/config.json", | |
# See all ParlerTTS models at https://huggingface.co/models?filter=parler_tts | |
} | |
class ParlerTTSDecoderConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of an [`ParlerTTSDecoder`]. It is used to instantiate a | |
Parler-TTS decoder according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the Parler-TTS | |
[parler-tts/parler-tts-mini-v1](https://huggingface.co/parler-tts/parler-tts-mini-v1) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 2049): | |
Vocabulary size of the ParlerTTSDecoder model. Defines the number of different tokens that can be | |
represented by the `inputs_ids` passed when calling [`ParlerTTSDecoder`]. | |
hidden_size (`int`, *optional*, defaults to 1024): | |
Dimensionality of the layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 24): | |
Number of decoder layers. | |
num_attention_heads (`int`, *optional*, defaults to 16): | |
Number of attention heads for each attention layer in the Transformer block. | |
num_key_value_heads (`int`, *optional*): | |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If | |
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | |
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | |
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | |
by meanpooling all the original heads within that group. For more details checkout [this | |
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | |
`num_attention_heads`. | |
num_cross_attention_key_value_heads (`int`, *optional*): | |
This is the number of key_value heads that should be used to implement Grouped Query Attention in the cross-attention layers. | |
If it is not specified, will default to `num_key_value_heads`. | |
ffn_dim (`int`, *optional*, defaults to 4096): | |
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer block. | |
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): | |
The non-linear activation function (function or string) in the decoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"silu"` and `"gelu_new"` are supported. | |
dropout (`float`, *optional*, defaults to 0.1): | |
The dropout probability for all fully connected layers in the embeddings, text_encoder, and pooler. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
activation_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for activations inside the fully connected layer. | |
max_position_embeddings (`int`, *optional*, defaults to 2048): | |
The maximum sequence length that this model might ever be used with. Typically, set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
initializer_factor (`float`, *optional*, defaults to 0.02): | |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
layerdrop (`float`, *optional*, defaults to 0.0): | |
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) | |
for more details. | |
scale_embedding (`bool`, *optional*, defaults to `False`): | |
Scale embeddings by diving by sqrt(hidden_size). | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether the model should return the last key/values attentions (not used by all models) | |
num_codebooks (`int`, *optional*, defaults to 4): | |
The number of parallel codebooks forwarded to the model. | |
tie_word_embeddings(`bool`, *optional*, defaults to `False`): | |
Whether input and output word embeddings should be tied. | |
rope_embeddings (`bool`, *optional*, defaults to `False`): | |
Whether to use ROPE or absolute positional embeddings. | |
rope_theta (`float`, *optional*, defaults to 100000.0): | |
The base period of the RoPE embeddings. | |
cross_attention_implementation_strategy (`str`, *optional*): | |
If not specified, the cross-attention implementation will be the same as `_attn_implementation`. If `always_eager`, it will always be the eager implementation. If `always_sdpa`, it will always be the sdpa implementation. | |
use_fused_lm_heads(`bool`, *optional*, defaults to `False`): | |
Whether to fuse audio LM heads instead of applying them sequentially. | |
codebook_weights(`List[int]`, *optional*): | |
Weights applied to each codebook when computing the loss. | |
""" | |
model_type = "parler_tts_decoder" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
vocab_size=2049, # vocab size = 2048 (encodec vocab size) + 1 (eos) | |
max_position_embeddings=2048, | |
num_hidden_layers=24, | |
ffn_dim=4096, | |
num_attention_heads=16, | |
num_key_value_heads=None, | |
num_cross_attention_key_value_heads=None, | |
layerdrop=0.0, | |
use_cache=True, | |
activation_function="gelu", | |
hidden_size=1024, | |
dropout=0.1, | |
attention_dropout=0.0, | |
activation_dropout=0.0, | |
initializer_factor=0.02, | |
scale_embedding=False, | |
num_codebooks=4, | |
pad_token_id=2048, | |
bos_token_id=2049, | |
eos_token_id=2048, | |
tie_word_embeddings=False, | |
rope_embeddings=False, | |
rope_theta=10_000.0, | |
cross_attention_implementation_strategy=None, | |
use_fused_lm_heads=False, | |
codebook_weights=None, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.hidden_size = hidden_size | |
self.ffn_dim = ffn_dim | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
if num_key_value_heads is None: | |
num_key_value_heads = num_attention_heads | |
self.num_key_value_heads = num_key_value_heads | |
if num_cross_attention_key_value_heads is None: | |
num_cross_attention_key_value_heads = num_key_value_heads | |
self.num_cross_attention_key_value_heads = num_cross_attention_key_value_heads | |
self.dropout = dropout | |
self.attention_dropout = attention_dropout | |
self.activation_dropout = activation_dropout | |
self.activation_function = activation_function | |
self.initializer_factor = initializer_factor | |
self.layerdrop = layerdrop | |
self.use_cache = use_cache | |
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True | |
self.num_codebooks = num_codebooks | |
self.rope_embeddings = rope_embeddings | |
self.rope_theta = rope_theta | |
self.cross_attention_implementation_strategy = cross_attention_implementation_strategy | |
self.use_fused_lm_heads = use_fused_lm_heads | |
self.codebook_weights = codebook_weights | |
if codebook_weights is not None and len(codebook_weights) != num_codebooks: | |
raise ValueError(f"`codebook_weights` has length {len(codebook_weights)} when it should be of length {num_codebooks}.") | |
super().__init__( | |
pad_token_id=pad_token_id, | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs, | |
) | |
class ParlerTTSConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`ParlerTTSModel`]. It is used to instantiate a | |
Parler-TTS model according to the specified arguments, defining the text encoder, audio encoder and Parler-TTS decoder | |
configs. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 1024): | |
Vocabulary size of the prompt token ids. Defines the number of different tokens that can be | |
represented by the `prompt_inputs_ids`. | |
prompt_cross_attention (`bool`, *optional*, defaults to `False`): | |
Whether to use cross-attention conditioning for the prompt (as well as the description). | |
kwargs (*optional*): | |
Dictionary of keyword arguments. Notably: | |
- **text_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that | |
defines the text encoder config. | |
- **audio_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that | |
defines the audio encoder config. | |
- **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines | |
the decoder config. | |
Example: | |
```python | |
>>> from transformers import ( | |
... ParlerTTSConfig, | |
... ParlerTTSDecoderConfig, | |
... T5Config, | |
... EncodecConfig, | |
... ParlerTTSForConditionalGeneration, | |
... ) | |
>>> # Initializing text encoder, audio encoder, and decoder model configurations | |
>>> text_encoder_config = T5Config() | |
>>> audio_encoder_config = EncodecConfig() | |
>>> decoder_config = ParlerTTSDecoderConfig() | |
>>> configuration = ParlerTTSConfig.from_sub_models_config( | |
... text_encoder_config, audio_encoder_config, decoder_config | |
... ) | |
>>> # Initializing a ParlerTTSForConditionalGeneration (with random weights) from the parler-tts/parler-tts-mini-v1 style configuration | |
>>> model = ParlerTTSForConditionalGeneration(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
>>> config_text_encoder = model.config.text_encoder | |
>>> config_audio_encoder = model.config.audio_encoder | |
>>> config_decoder = model.config.decoder | |
>>> # Saving the model, including its configuration | |
>>> model.save_pretrained("parler_tts-model") | |
>>> # loading model and config from pretrained folder | |
>>> parler_tts_config = ParlerTTSConfig.from_pretrained("parler_tts-model") | |
>>> model = ParlerTTSForConditionalGeneration.from_pretrained("parler_tts-model", config=parler_tts_config) | |
```""" | |
model_type = "parler_tts" | |
is_composition = True | |
def __init__(self, vocab_size=1024, prompt_cross_attention=False, **kwargs): | |
super().__init__(**kwargs) | |
if "text_encoder" not in kwargs or "audio_encoder" not in kwargs or "decoder" not in kwargs: | |
raise ValueError("Config has to be initialized with text_encoder, audio_encoder and decoder config") | |
text_encoder_config = kwargs.pop("text_encoder") | |
text_encoder_model_type = text_encoder_config.pop("model_type") | |
audio_encoder_config = kwargs.pop("audio_encoder") | |
audio_encoder_model_type = audio_encoder_config.pop("model_type") | |
model_version = kwargs.get("transformers_version", None) | |
if model_version is not None and Version(model_version) <= Version("4.44.2dev") and use_dac_on_the_hub and audio_encoder_model_type=="dac": | |
# here we have to manually change model type if DAC based on transformers version | |
audio_encoder_model_type = "dac_on_the_hub" | |
decoder_config = kwargs.pop("decoder") | |
self.vocab_size = vocab_size | |
self.prompt_cross_attention = prompt_cross_attention | |
self.text_encoder = AutoConfig.for_model(text_encoder_model_type, **text_encoder_config) | |
self.audio_encoder = AutoConfig.for_model(audio_encoder_model_type, **audio_encoder_config) | |
self.decoder = ParlerTTSDecoderConfig(**decoder_config) | |
self.is_encoder_decoder = True | |
def from_sub_models_config( | |
cls, | |
text_encoder_config: PretrainedConfig, | |
audio_encoder_config: PretrainedConfig, | |
decoder_config: ParlerTTSDecoderConfig, | |
**kwargs, | |
): | |
r""" | |
Instantiate a [`ParlerTTSConfig`] (or a derived class) from text encoder, audio encoder and decoder | |
configurations. | |
Returns: | |
[`ParlerTTSConfig`]: An instance of a configuration object | |
""" | |
return cls( | |
text_encoder=text_encoder_config.to_dict(), | |
audio_encoder=audio_encoder_config.to_dict(), | |
decoder=decoder_config.to_dict(), | |
**kwargs, | |
) | |
# This is a property because you might want to change the codec model on the fly | |
def sampling_rate(self): | |
return self.audio_encoder.sampling_rate |