File size: 14,463 Bytes
195bb33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# coding=utf-8
# Copyright 2024 and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Parler-TTS model configuration"""

from transformers import AutoConfig, logging
from transformers.configuration_utils import PretrainedConfig

from importlib.metadata import version
from packaging.version import Version

use_dac_on_the_hub = Version(version("transformers")) > Version("4.44.2dev")

logger = logging.get_logger(__name__)

PARLER_TTS_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "parler-tts/parler-tts-mini-v1": "https://huggingface.co/parler-tts/parler-tts-mini-v1/resolve/main/config.json",
    # See all ParlerTTS models at https://huggingface.co/models?filter=parler_tts
}


class ParlerTTSDecoderConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of an [`ParlerTTSDecoder`]. It is used to instantiate a
    Parler-TTS decoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the Parler-TTS
    [parler-tts/parler-tts-mini-v1](https://huggingface.co/parler-tts/parler-tts-mini-v1) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 2049):
            Vocabulary size of the ParlerTTSDecoder model. Defines the number of different tokens that can be
            represented by the `inputs_ids` passed when calling [`ParlerTTSDecoder`].
        hidden_size (`int`, *optional*, defaults to 1024):
            Dimensionality of the layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 24):
            Number of decoder layers.
        num_attention_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each attention layer in the Transformer block.
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        num_cross_attention_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention in the cross-attention layers.
            If it is not specified, will default to `num_key_value_heads`.
        ffn_dim (`int`, *optional*, defaults to 4096):
            Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer block.
        activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the decoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, text_encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        activation_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for activations inside the fully connected layer.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Typically, set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        initializer_factor (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
            for more details.
        scale_embedding (`bool`, *optional*, defaults to `False`):
            Scale embeddings by diving by sqrt(hidden_size).
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether the model should return the last key/values attentions (not used by all models)
        num_codebooks (`int`, *optional*, defaults to 4):
            The number of parallel codebooks forwarded to the model.
        tie_word_embeddings(`bool`, *optional*, defaults to `False`):
            Whether input and output word embeddings should be tied.
        rope_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to use ROPE or absolute positional embeddings.
        rope_theta (`float`, *optional*, defaults to 100000.0):
            The base period of the RoPE embeddings.
        cross_attention_implementation_strategy (`str`, *optional*):
            If not specified, the cross-attention implementation will be the same as `_attn_implementation`. If `always_eager`, it will always be the eager implementation. If `always_sdpa`, it will always be the sdpa implementation.
        use_fused_lm_heads(`bool`, *optional*, defaults to `False`):
            Whether to fuse audio LM heads instead of applying them sequentially.
        codebook_weights(`List[int]`, *optional*):
            Weights applied to each codebook when computing the loss.
    """

    model_type = "parler_tts_decoder"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=2049,  # vocab size = 2048 (encodec vocab size) + 1 (eos)
        max_position_embeddings=2048,
        num_hidden_layers=24,
        ffn_dim=4096,
        num_attention_heads=16,
        num_key_value_heads=None,
        num_cross_attention_key_value_heads=None,
        layerdrop=0.0,
        use_cache=True,
        activation_function="gelu",
        hidden_size=1024,
        dropout=0.1,
        attention_dropout=0.0,
        activation_dropout=0.0,
        initializer_factor=0.02,
        scale_embedding=False,
        num_codebooks=4,
        pad_token_id=2048,
        bos_token_id=2049,
        eos_token_id=2048,
        tie_word_embeddings=False,
        rope_embeddings=False,
        rope_theta=10_000.0,
        cross_attention_implementation_strategy=None,
        use_fused_lm_heads=False,
        codebook_weights=None,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.ffn_dim = ffn_dim
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        if num_cross_attention_key_value_heads is None:
            num_cross_attention_key_value_heads = num_key_value_heads
        self.num_cross_attention_key_value_heads = num_cross_attention_key_value_heads
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.activation_dropout = activation_dropout
        self.activation_function = activation_function
        self.initializer_factor = initializer_factor
        self.layerdrop = layerdrop
        self.use_cache = use_cache
        self.scale_embedding = scale_embedding  # scale factor will be sqrt(d_model) if True
        self.num_codebooks = num_codebooks
        self.rope_embeddings = rope_embeddings
        self.rope_theta = rope_theta
        self.cross_attention_implementation_strategy = cross_attention_implementation_strategy
        self.use_fused_lm_heads = use_fused_lm_heads
        self.codebook_weights = codebook_weights

        if codebook_weights is not None and len(codebook_weights) != num_codebooks:
            raise ValueError(f"`codebook_weights` has length {len(codebook_weights)} when it should be of length {num_codebooks}.")
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )


class ParlerTTSConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`ParlerTTSModel`]. It is used to instantiate a
    Parler-TTS model according to the specified arguments, defining the text encoder, audio encoder and Parler-TTS decoder
    configs.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 1024):
            Vocabulary size of the prompt token ids. Defines the number of different tokens that can be
            represented by the `prompt_inputs_ids`.
        prompt_cross_attention (`bool`, *optional*, defaults to `False`):
            Whether to use cross-attention conditioning for the prompt (as well as the description).
        kwargs (*optional*):
            Dictionary of keyword arguments. Notably:

                - **text_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
                  defines the text encoder config.
                - **audio_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that
                  defines the audio encoder config.
                - **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines
                  the decoder config.

    Example:

    ```python
    >>> from transformers import (
    ...     ParlerTTSConfig,
    ...     ParlerTTSDecoderConfig,
    ...     T5Config,
    ...     EncodecConfig,
    ...     ParlerTTSForConditionalGeneration,
    ... )

    >>> # Initializing text encoder, audio encoder, and decoder model configurations
    >>> text_encoder_config = T5Config()
    >>> audio_encoder_config = EncodecConfig()
    >>> decoder_config = ParlerTTSDecoderConfig()

    >>> configuration = ParlerTTSConfig.from_sub_models_config(
    ...     text_encoder_config, audio_encoder_config, decoder_config
    ... )

    >>> # Initializing a ParlerTTSForConditionalGeneration (with random weights) from the parler-tts/parler-tts-mini-v1 style configuration
    >>> model = ParlerTTSForConditionalGeneration(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    >>> config_text_encoder = model.config.text_encoder
    >>> config_audio_encoder = model.config.audio_encoder
    >>> config_decoder = model.config.decoder

    >>> # Saving the model, including its configuration
    >>> model.save_pretrained("parler_tts-model")

    >>> # loading model and config from pretrained folder
    >>> parler_tts_config = ParlerTTSConfig.from_pretrained("parler_tts-model")
    >>> model = ParlerTTSForConditionalGeneration.from_pretrained("parler_tts-model", config=parler_tts_config)
    ```"""

    model_type = "parler_tts"
    is_composition = True

    def __init__(self, vocab_size=1024, prompt_cross_attention=False, **kwargs):
        super().__init__(**kwargs)
        if "text_encoder" not in kwargs or "audio_encoder" not in kwargs or "decoder" not in kwargs:
            raise ValueError("Config has to be initialized with text_encoder, audio_encoder and decoder config")

        text_encoder_config = kwargs.pop("text_encoder")
        text_encoder_model_type = text_encoder_config.pop("model_type")

        audio_encoder_config = kwargs.pop("audio_encoder")
        audio_encoder_model_type = audio_encoder_config.pop("model_type")

        model_version = kwargs.get("transformers_version", None)
        if model_version is not None and Version(model_version) <= Version("4.44.2dev") and use_dac_on_the_hub and audio_encoder_model_type=="dac":
            # here we have to manually change model type if DAC based on transformers version
            audio_encoder_model_type = "dac_on_the_hub"

        decoder_config = kwargs.pop("decoder")

        self.vocab_size = vocab_size
        self.prompt_cross_attention = prompt_cross_attention
        self.text_encoder = AutoConfig.for_model(text_encoder_model_type, **text_encoder_config)
        self.audio_encoder = AutoConfig.for_model(audio_encoder_model_type, **audio_encoder_config)
        self.decoder = ParlerTTSDecoderConfig(**decoder_config)
        self.is_encoder_decoder = True

    @classmethod
    def from_sub_models_config(
        cls,
        text_encoder_config: PretrainedConfig,
        audio_encoder_config: PretrainedConfig,
        decoder_config: ParlerTTSDecoderConfig,
        **kwargs,
    ):
        r"""
        Instantiate a [`ParlerTTSConfig`] (or a derived class) from text encoder, audio encoder and decoder
        configurations.

        Returns:
            [`ParlerTTSConfig`]: An instance of a configuration object
        """

        return cls(
            text_encoder=text_encoder_config.to_dict(),
            audio_encoder=audio_encoder_config.to_dict(),
            decoder=decoder_config.to_dict(),
            **kwargs,
        )

    @property
    # This is a property because you might want to change the codec model on the fly
    def sampling_rate(self):
        return self.audio_encoder.sampling_rate