abdouramandalil's picture
Create app.py
a7ee9ab verified
raw
history blame
1.1 kB
import streamlit as st
import pandas as pd
from sklearn import datasets
from sklearn.ensemble import RandomForestClassifier
st.title("""Iris App Classifier""")
st.sidebar.header('User input parameters')
def user_input_features():
sepal_length = st.sidebar.slider('Sepal length',4.3,7.8,5.0)
sepal_width = st.sidebar.slider('Sepal width',2.0,4.8,3.0)
petal_length = st.sidebar.slider('petal length',1.0,6.9,1.3)
petal_width = st.sidebar.slider('petal width',0.1,2.5,0.2)
data = {'sepal_length':sepal_length,'sepal_width':sepal_width,
'petal_length':petal_length,'petal_width':petal_width}
features = pd.DataFrame(data,index=[0])
return features
df = user_input_features()
st.write(df)
iris = datasets.load_iris()
X=iris.data
y=iris.target
clf = RandomForestClassifier()
clf.fit(X,y)
prediction = clf.predict(df)
prediction_proba = clf.predict_proba(df)
st.subheader('Class labels')
st.write(iris.target_names)
st.subheader('Prediction')
st.write(iris.target_names[prediction])
st.subheader('Prediction_Proba')
st.write(prediction_proba)