Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from sklearn import datasets | |
from sklearn.ensemble import RandomForestClassifier | |
st.title("""Iris App Classifier""") | |
st.sidebar.header('User input parameters') | |
def user_input_features(): | |
sepal_length = st.sidebar.slider('Sepal length',4.3,7.8,5.0) | |
sepal_width = st.sidebar.slider('Sepal width',2.0,4.8,3.0) | |
petal_length = st.sidebar.slider('petal length',1.0,6.9,1.3) | |
petal_width = st.sidebar.slider('petal width',0.1,2.5,0.2) | |
data = {'sepal_length':sepal_length,'sepal_width':sepal_width, | |
'petal_length':petal_length,'petal_width':petal_width} | |
features = pd.DataFrame(data,index=[0]) | |
return features | |
df = user_input_features() | |
st.write(df) | |
iris = datasets.load_iris() | |
X=iris.data | |
y=iris.target | |
clf = RandomForestClassifier() | |
clf.fit(X,y) | |
prediction = clf.predict(df) | |
prediction_proba = clf.predict_proba(df) | |
st.subheader('Class labels') | |
st.write(iris.target_names) | |
st.subheader('Prediction') | |
st.write(iris.target_names[prediction]) | |
st.subheader('Prediction_Proba') | |
st.write(prediction_proba) |