abdouramandalil commited on
Commit
a7ee9ab
·
verified ·
1 Parent(s): 09cefd6

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -0
app.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ from sklearn import datasets
4
+ from sklearn.ensemble import RandomForestClassifier
5
+
6
+ st.title("""Iris App Classifier""")
7
+ st.sidebar.header('User input parameters')
8
+
9
+ def user_input_features():
10
+ sepal_length = st.sidebar.slider('Sepal length',4.3,7.8,5.0)
11
+ sepal_width = st.sidebar.slider('Sepal width',2.0,4.8,3.0)
12
+ petal_length = st.sidebar.slider('petal length',1.0,6.9,1.3)
13
+ petal_width = st.sidebar.slider('petal width',0.1,2.5,0.2)
14
+
15
+ data = {'sepal_length':sepal_length,'sepal_width':sepal_width,
16
+ 'petal_length':petal_length,'petal_width':petal_width}
17
+
18
+ features = pd.DataFrame(data,index=[0])
19
+ return features
20
+
21
+ df = user_input_features()
22
+ st.write(df)
23
+
24
+ iris = datasets.load_iris()
25
+ X=iris.data
26
+ y=iris.target
27
+
28
+ clf = RandomForestClassifier()
29
+ clf.fit(X,y)
30
+
31
+ prediction = clf.predict(df)
32
+ prediction_proba = clf.predict_proba(df)
33
+
34
+ st.subheader('Class labels')
35
+ st.write(iris.target_names)
36
+
37
+ st.subheader('Prediction')
38
+ st.write(iris.target_names[prediction])
39
+
40
+ st.subheader('Prediction_Proba')
41
+ st.write(prediction_proba)