Spaces:
Sleeping
Sleeping
| import os | |
| import math | |
| import time | |
| import inspect | |
| from dataclasses import dataclass | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| # Set MPS memory management | |
| os.environ['PYTORCH_MPS_HIGH_WATERMARK_RATIO'] = '0.0' | |
| os.environ['PYTORCH_MPS_LOW_WATERMARK_RATIO'] = '0.5' | |
| class CausalSelfAttention(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| assert config.n_embd % config.n_head == 0 | |
| # key, query, value projections for all heads, but in a batch | |
| self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) | |
| # output projection | |
| self.c_proj = nn.Linear(config.n_embd, config.n_embd) | |
| self.c_proj.NANGPT_SCALE_INIT = 1 | |
| # regularization | |
| self.n_head = config.n_head | |
| self.n_embd = config.n_embd | |
| self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) | |
| .view(1, 1, config.block_size, config.block_size)) | |
| def forward(self, x): | |
| B, T, C = x.size() | |
| qkv = self.c_attn(x) | |
| q, k, v = qkv.split(self.n_embd, dim=2) | |
| k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
| q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
| v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
| att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) | |
| att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf')) | |
| att = F.softmax(att, dim=-1) | |
| y = att @ v | |
| y = y.transpose(1, 2).contiguous().view(B, T, C) | |
| y = self.c_proj(y) | |
| return y | |
| class MLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) | |
| self.gelu = nn.GELU(approximate='tanh') | |
| self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) | |
| self.c_proj.NANOGPT_SCALE_INIT = 1 | |
| def forward(self, x): | |
| x = self.c_fc(x) | |
| x = self.gelu(x) | |
| x = self.c_proj(x) | |
| return x | |
| class Block(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.ln_1 = nn.LayerNorm(config.n_embd) | |
| self.attn = CausalSelfAttention(config) | |
| self.ln_2 = nn.LayerNorm(config.n_embd) | |
| self.mlp = MLP(config) | |
| def forward(self, x): | |
| x = x + self.attn(self.ln_1(x)) | |
| x = x + self.mlp(self.ln_2(x)) | |
| return x | |
| class GPTConfig: | |
| block_size: int = 1024 | |
| vocab_size: int = 50257 | |
| n_layer: int = 12 | |
| n_head: int = 12 | |
| n_embd: int = 768 | |
| class GPT(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.transformer = nn.ModuleDict(dict( | |
| wte = nn.Embedding(config.vocab_size, config.n_embd), | |
| wpe = nn.Embedding(config.block_size, config.n_embd), | |
| h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
| ln_f = nn.LayerNorm(config.n_embd), | |
| )) | |
| self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
| self.transformer.wte.weight = self.lm_head.weight | |
| self.apply(self._init_weights) | |
| def _init_weights(self, module): | |
| if isinstance(module, nn.Linear): | |
| std = 0.02 | |
| if hasattr(module, 'NANGPT_SCALE_INIT'): | |
| std *= (2 * self.config.n_layer) ** -0.5 | |
| torch.nn.init.normal_(module.weight, mean=0.0, std=std) | |
| if module.bias is not None: | |
| torch.nn.init.zeros_(module.bias) | |
| elif isinstance(module, nn.Embedding): | |
| torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
| def forward(self, idx, targets=None): | |
| B, T = idx.size() | |
| assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}" | |
| pos = torch.arange(0, T, dtype=torch.long, device=idx.device) | |
| tok_emb = self.transformer.wte(idx) | |
| pos_emb = self.transformer.wpe(pos) | |
| x = tok_emb + pos_emb | |
| for block in self.transformer.h: | |
| x = block(x) | |
| x = self.transformer.ln_f(x) | |
| logits = self.lm_head(x) | |
| loss = None | |
| if targets is not None: | |
| loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) | |
| return logits, loss | |
| class DataLoaderLite: | |
| def __init__(self, B, T): | |
| self.B = B | |
| self.T = T | |
| with open('src/input.txt', 'r') as f: | |
| text = f.read() | |
| enc = tiktoken.get_encoding('gpt2') | |
| tokens = enc.encode(text) | |
| self.tokens = torch.tensor(tokens) | |
| print(f'loaded {len(self.tokens)} tokens') | |
| print(f'1 epoch = {len(self.tokens) // (B * T)} batches') | |
| self.current_position = 0 | |
| def next_batch(self): | |
| B, T = self.B, self.T | |
| buf = self.tokens[self.current_position: self.current_position + B * T + 1] | |
| x = (buf[:-1]).view(B, T) | |
| y = (buf[1:]).view(B, T) | |
| self.current_position += B*T | |
| if self.current_position + (B * T + 1) > len(self.tokens): | |
| self.current_position = 0 | |
| return x, y | |
| # write the main block | |
| if __name__ == "__main__": | |
| # Device configuration | |
| device = 'cpu' | |
| if torch.cuda.is_available(): | |
| device = 'cuda' | |
| elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available(): | |
| device = "mps" | |
| print(f"using device: {device}") | |
| # Set random seed | |
| torch.manual_seed(1337) | |
| if torch.cuda.is_available(): | |
| torch.cuda.manual_seed(1337) | |
| # Initialize model and move to device | |
| model = GPT(GPTConfig()) | |
| model.to(device) | |
| # Initialize data loader | |
| train_loader = DataLoaderLite(B=4, T=32) | |
| # Training settings | |
| learning_rate = 3e-4 | |
| num_iters = 100000 # Increased to 100000 | |
| eval_interval = 50 # Evaluate every 50 iterations | |
| best_loss = float('inf') | |
| checkpoint_dir = 'checkpoints' | |
| os.makedirs(checkpoint_dir, exist_ok=True) | |
| # Initialize optimizer | |
| optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate) | |
| print(f"\n=== Starting Training ===") | |
| print(f"Total iterations: {num_iters}") | |
| print(f"Evaluation interval: {eval_interval}") | |
| print(f"Learning rate: {learning_rate}") | |
| # Training loop | |
| for iter in range(num_iters): | |
| # Get batch | |
| x, y = train_loader.next_batch() | |
| x, y = x.to(device), y.to(device) | |
| # Forward pass | |
| optimizer.zero_grad() | |
| logits, loss = model(x, y) | |
| # Backward pass | |
| loss.backward() | |
| optimizer.step() | |
| # Log progress every 50 iterations | |
| if iter % eval_interval == 0: | |
| current_loss = loss.item() | |
| print(f'step {iter}, loss: {current_loss:.4f}') | |
| # Save if this is the best model so far | |
| if current_loss < best_loss: | |
| best_loss = current_loss | |
| checkpoint_path = os.path.join(checkpoint_dir, f'model_step_{iter}_loss_{current_loss:.4f}.pt') | |
| torch.save({ | |
| 'iter': iter, | |
| 'model_state_dict': model.state_dict(), | |
| 'optimizer_state_dict': optimizer.state_dict(), | |
| 'loss': current_loss, | |
| 'best_loss': best_loss, | |
| }, checkpoint_path) | |
| print(f'New best model saved! Loss: {current_loss:.4f}') | |
| # Also save as best model | |
| torch.save({ | |
| 'iter': iter, | |
| 'model_state_dict': model.state_dict(), | |
| 'optimizer_state_dict': optimizer.state_dict(), | |
| 'loss': current_loss, | |
| 'best_loss': best_loss, | |
| }, 'best_model.pt') | |
| print("\n=== Training Complete ===") | |
| print(f"Best loss achieved: {best_loss:.4f}") | |
| # Save final model | |
| final_path = os.path.join(checkpoint_dir, 'model_final.pt') | |
| torch.save({ | |
| 'iter': num_iters-1, | |
| 'model_state_dict': model.state_dict(), | |
| 'optimizer_state_dict': optimizer.state_dict(), | |
| 'loss': loss.item(), | |
| 'best_loss': best_loss, | |
| }, final_path) | |