gpt2_session12 / train_shakespeare.py
aayushraina's picture
Upload 2 files
028bd08 verified
import os
import math
import time
import inspect
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
# Set MPS memory management
os.environ['PYTORCH_MPS_HIGH_WATERMARK_RATIO'] = '0.0'
os.environ['PYTORCH_MPS_LOW_WATERMARK_RATIO'] = '0.5'
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
# output projection
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.c_proj.NANGPT_SCALE_INIT = 1
# regularization
self.n_head = config.n_head
self.n_embd = config.n_embd
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
.view(1, 1, config.block_size, config.block_size))
def forward(self, x):
B, T, C = x.size()
qkv = self.c_attn(x)
q, k, v = qkv.split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU(approximate='tanh')
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
@dataclass
class GPTConfig:
block_size: int = 1024
vocab_size: int = 50257
n_layer: int = 12
n_head: int = 12
n_embd: int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.transformer.wte.weight = self.lm_head.weight
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANGPT_SCALE_INIT'):
std *= (2 * self.config.n_layer) ** -0.5
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.size()
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
tok_emb = self.transformer.wte(idx)
pos_emb = self.transformer.wpe(pos)
x = tok_emb + pos_emb
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
class DataLoaderLite:
def __init__(self, B, T):
self.B = B
self.T = T
with open('src/input.txt', 'r') as f:
text = f.read()
enc = tiktoken.get_encoding('gpt2')
tokens = enc.encode(text)
self.tokens = torch.tensor(tokens)
print(f'loaded {len(self.tokens)} tokens')
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
self.current_position = 0
def next_batch(self):
B, T = self.B, self.T
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
x = (buf[:-1]).view(B, T)
y = (buf[1:]).view(B, T)
self.current_position += B*T
if self.current_position + (B * T + 1) > len(self.tokens):
self.current_position = 0
return x, y
# write the main block
if __name__ == "__main__":
# Device configuration
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
device = "mps"
print(f"using device: {device}")
# Set random seed
torch.manual_seed(1337)
if torch.cuda.is_available():
torch.cuda.manual_seed(1337)
# Initialize model and move to device
model = GPT(GPTConfig())
model.to(device)
# Initialize data loader
train_loader = DataLoaderLite(B=4, T=32)
# Training settings
learning_rate = 3e-4
num_iters = 100000 # Increased to 100000
eval_interval = 50 # Evaluate every 50 iterations
best_loss = float('inf')
checkpoint_dir = 'checkpoints'
os.makedirs(checkpoint_dir, exist_ok=True)
# Initialize optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
print(f"\n=== Starting Training ===")
print(f"Total iterations: {num_iters}")
print(f"Evaluation interval: {eval_interval}")
print(f"Learning rate: {learning_rate}")
# Training loop
for iter in range(num_iters):
# Get batch
x, y = train_loader.next_batch()
x, y = x.to(device), y.to(device)
# Forward pass
optimizer.zero_grad()
logits, loss = model(x, y)
# Backward pass
loss.backward()
optimizer.step()
# Log progress every 50 iterations
if iter % eval_interval == 0:
current_loss = loss.item()
print(f'step {iter}, loss: {current_loss:.4f}')
# Save if this is the best model so far
if current_loss < best_loss:
best_loss = current_loss
checkpoint_path = os.path.join(checkpoint_dir, f'model_step_{iter}_loss_{current_loss:.4f}.pt')
torch.save({
'iter': iter,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': current_loss,
'best_loss': best_loss,
}, checkpoint_path)
print(f'New best model saved! Loss: {current_loss:.4f}')
# Also save as best model
torch.save({
'iter': iter,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': current_loss,
'best_loss': best_loss,
}, 'best_model.pt')
print("\n=== Training Complete ===")
print(f"Best loss achieved: {best_loss:.4f}")
# Save final model
final_path = os.path.join(checkpoint_dir, 'model_final.pt')
torch.save({
'iter': num_iters-1,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss.item(),
'best_loss': best_loss,
}, final_path)