Spaces:
Sleeping
Sleeping
import os | |
import math | |
import time | |
import inspect | |
from dataclasses import dataclass | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
# Set MPS memory management | |
os.environ['PYTORCH_MPS_HIGH_WATERMARK_RATIO'] = '0.0' | |
os.environ['PYTORCH_MPS_LOW_WATERMARK_RATIO'] = '0.5' | |
class CausalSelfAttention(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
assert config.n_embd % config.n_head == 0 | |
# key, query, value projections for all heads, but in a batch | |
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) | |
# output projection | |
self.c_proj = nn.Linear(config.n_embd, config.n_embd) | |
self.c_proj.NANGPT_SCALE_INIT = 1 | |
# regularization | |
self.n_head = config.n_head | |
self.n_embd = config.n_embd | |
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) | |
.view(1, 1, config.block_size, config.block_size)) | |
def forward(self, x): | |
B, T, C = x.size() | |
qkv = self.c_attn(x) | |
q, k, v = qkv.split(self.n_embd, dim=2) | |
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) | |
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) | |
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf')) | |
att = F.softmax(att, dim=-1) | |
y = att @ v | |
y = y.transpose(1, 2).contiguous().view(B, T, C) | |
y = self.c_proj(y) | |
return y | |
class MLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) | |
self.gelu = nn.GELU(approximate='tanh') | |
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) | |
self.c_proj.NANOGPT_SCALE_INIT = 1 | |
def forward(self, x): | |
x = self.c_fc(x) | |
x = self.gelu(x) | |
x = self.c_proj(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.ln_1 = nn.LayerNorm(config.n_embd) | |
self.attn = CausalSelfAttention(config) | |
self.ln_2 = nn.LayerNorm(config.n_embd) | |
self.mlp = MLP(config) | |
def forward(self, x): | |
x = x + self.attn(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class GPTConfig: | |
block_size: int = 1024 | |
vocab_size: int = 50257 | |
n_layer: int = 12 | |
n_head: int = 12 | |
n_embd: int = 768 | |
class GPT(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.transformer = nn.ModuleDict(dict( | |
wte = nn.Embedding(config.vocab_size, config.n_embd), | |
wpe = nn.Embedding(config.block_size, config.n_embd), | |
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), | |
ln_f = nn.LayerNorm(config.n_embd), | |
)) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
self.transformer.wte.weight = self.lm_head.weight | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
std = 0.02 | |
if hasattr(module, 'NANGPT_SCALE_INIT'): | |
std *= (2 * self.config.n_layer) ** -0.5 | |
torch.nn.init.normal_(module.weight, mean=0.0, std=std) | |
if module.bias is not None: | |
torch.nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
def forward(self, idx, targets=None): | |
B, T = idx.size() | |
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}" | |
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) | |
tok_emb = self.transformer.wte(idx) | |
pos_emb = self.transformer.wpe(pos) | |
x = tok_emb + pos_emb | |
for block in self.transformer.h: | |
x = block(x) | |
x = self.transformer.ln_f(x) | |
logits = self.lm_head(x) | |
loss = None | |
if targets is not None: | |
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) | |
return logits, loss | |
class DataLoaderLite: | |
def __init__(self, B, T): | |
self.B = B | |
self.T = T | |
with open('src/input.txt', 'r') as f: | |
text = f.read() | |
enc = tiktoken.get_encoding('gpt2') | |
tokens = enc.encode(text) | |
self.tokens = torch.tensor(tokens) | |
print(f'loaded {len(self.tokens)} tokens') | |
print(f'1 epoch = {len(self.tokens) // (B * T)} batches') | |
self.current_position = 0 | |
def next_batch(self): | |
B, T = self.B, self.T | |
buf = self.tokens[self.current_position: self.current_position + B * T + 1] | |
x = (buf[:-1]).view(B, T) | |
y = (buf[1:]).view(B, T) | |
self.current_position += B*T | |
if self.current_position + (B * T + 1) > len(self.tokens): | |
self.current_position = 0 | |
return x, y | |
# write the main block | |
if __name__ == "__main__": | |
# Device configuration | |
device = 'cpu' | |
if torch.cuda.is_available(): | |
device = 'cuda' | |
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available(): | |
device = "mps" | |
print(f"using device: {device}") | |
# Set random seed | |
torch.manual_seed(1337) | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed(1337) | |
# Initialize model and move to device | |
model = GPT(GPTConfig()) | |
model.to(device) | |
# Initialize data loader | |
train_loader = DataLoaderLite(B=4, T=32) | |
# Training settings | |
learning_rate = 3e-4 | |
num_iters = 100000 # Increased to 100000 | |
eval_interval = 50 # Evaluate every 50 iterations | |
best_loss = float('inf') | |
checkpoint_dir = 'checkpoints' | |
os.makedirs(checkpoint_dir, exist_ok=True) | |
# Initialize optimizer | |
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate) | |
print(f"\n=== Starting Training ===") | |
print(f"Total iterations: {num_iters}") | |
print(f"Evaluation interval: {eval_interval}") | |
print(f"Learning rate: {learning_rate}") | |
# Training loop | |
for iter in range(num_iters): | |
# Get batch | |
x, y = train_loader.next_batch() | |
x, y = x.to(device), y.to(device) | |
# Forward pass | |
optimizer.zero_grad() | |
logits, loss = model(x, y) | |
# Backward pass | |
loss.backward() | |
optimizer.step() | |
# Log progress every 50 iterations | |
if iter % eval_interval == 0: | |
current_loss = loss.item() | |
print(f'step {iter}, loss: {current_loss:.4f}') | |
# Save if this is the best model so far | |
if current_loss < best_loss: | |
best_loss = current_loss | |
checkpoint_path = os.path.join(checkpoint_dir, f'model_step_{iter}_loss_{current_loss:.4f}.pt') | |
torch.save({ | |
'iter': iter, | |
'model_state_dict': model.state_dict(), | |
'optimizer_state_dict': optimizer.state_dict(), | |
'loss': current_loss, | |
'best_loss': best_loss, | |
}, checkpoint_path) | |
print(f'New best model saved! Loss: {current_loss:.4f}') | |
# Also save as best model | |
torch.save({ | |
'iter': iter, | |
'model_state_dict': model.state_dict(), | |
'optimizer_state_dict': optimizer.state_dict(), | |
'loss': current_loss, | |
'best_loss': best_loss, | |
}, 'best_model.pt') | |
print("\n=== Training Complete ===") | |
print(f"Best loss achieved: {best_loss:.4f}") | |
# Save final model | |
final_path = os.path.join(checkpoint_dir, 'model_final.pt') | |
torch.save({ | |
'iter': num_iters-1, | |
'model_state_dict': model.state_dict(), | |
'optimizer_state_dict': optimizer.state_dict(), | |
'loss': loss.item(), | |
'best_loss': best_loss, | |
}, final_path) | |