Spaces:
Sleeping
Sleeping
File size: 8,306 Bytes
840b176 028bd08 840b176 028bd08 840b176 028bd08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import os
import math
import time
import inspect
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
# Set MPS memory management
os.environ['PYTORCH_MPS_HIGH_WATERMARK_RATIO'] = '0.0'
os.environ['PYTORCH_MPS_LOW_WATERMARK_RATIO'] = '0.5'
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
# key, query, value projections for all heads, but in a batch
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
# output projection
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.c_proj.NANGPT_SCALE_INIT = 1
# regularization
self.n_head = config.n_head
self.n_embd = config.n_embd
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
.view(1, 1, config.block_size, config.block_size))
def forward(self, x):
B, T, C = x.size()
qkv = self.c_attn(x)
q, k, v = qkv.split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
att = F.softmax(att, dim=-1)
y = att @ v
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.c_proj(y)
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU(approximate='tanh')
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
@dataclass
class GPTConfig:
block_size: int = 1024
vocab_size: int = 50257
n_layer: int = 12
n_head: int = 12
n_embd: int = 768
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.transformer.wte.weight = self.lm_head.weight
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANGPT_SCALE_INIT'):
std *= (2 * self.config.n_layer) ** -0.5
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.size()
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
tok_emb = self.transformer.wte(idx)
pos_emb = self.transformer.wpe(pos)
x = tok_emb + pos_emb
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
class DataLoaderLite:
def __init__(self, B, T):
self.B = B
self.T = T
with open('src/input.txt', 'r') as f:
text = f.read()
enc = tiktoken.get_encoding('gpt2')
tokens = enc.encode(text)
self.tokens = torch.tensor(tokens)
print(f'loaded {len(self.tokens)} tokens')
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
self.current_position = 0
def next_batch(self):
B, T = self.B, self.T
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
x = (buf[:-1]).view(B, T)
y = (buf[1:]).view(B, T)
self.current_position += B*T
if self.current_position + (B * T + 1) > len(self.tokens):
self.current_position = 0
return x, y
# write the main block
if __name__ == "__main__":
# Device configuration
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
device = "mps"
print(f"using device: {device}")
# Set random seed
torch.manual_seed(1337)
if torch.cuda.is_available():
torch.cuda.manual_seed(1337)
# Initialize model and move to device
model = GPT(GPTConfig())
model.to(device)
# Initialize data loader
train_loader = DataLoaderLite(B=4, T=32)
# Training settings
learning_rate = 3e-4
num_iters = 100000 # Increased to 100000
eval_interval = 50 # Evaluate every 50 iterations
best_loss = float('inf')
checkpoint_dir = 'checkpoints'
os.makedirs(checkpoint_dir, exist_ok=True)
# Initialize optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
print(f"\n=== Starting Training ===")
print(f"Total iterations: {num_iters}")
print(f"Evaluation interval: {eval_interval}")
print(f"Learning rate: {learning_rate}")
# Training loop
for iter in range(num_iters):
# Get batch
x, y = train_loader.next_batch()
x, y = x.to(device), y.to(device)
# Forward pass
optimizer.zero_grad()
logits, loss = model(x, y)
# Backward pass
loss.backward()
optimizer.step()
# Log progress every 50 iterations
if iter % eval_interval == 0:
current_loss = loss.item()
print(f'step {iter}, loss: {current_loss:.4f}')
# Save if this is the best model so far
if current_loss < best_loss:
best_loss = current_loss
checkpoint_path = os.path.join(checkpoint_dir, f'model_step_{iter}_loss_{current_loss:.4f}.pt')
torch.save({
'iter': iter,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': current_loss,
'best_loss': best_loss,
}, checkpoint_path)
print(f'New best model saved! Loss: {current_loss:.4f}')
# Also save as best model
torch.save({
'iter': iter,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': current_loss,
'best_loss': best_loss,
}, 'best_model.pt')
print("\n=== Training Complete ===")
print(f"Best loss achieved: {best_loss:.4f}")
# Save final model
final_path = os.path.join(checkpoint_dir, 'model_final.pt')
torch.save({
'iter': num_iters-1,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss.item(),
'best_loss': best_loss,
}, final_path)
|