File size: 8,306 Bytes
840b176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
028bd08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
840b176
028bd08
 
 
 
840b176
028bd08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
import math
import time
import inspect
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F

# Set MPS memory management
os.environ['PYTORCH_MPS_HIGH_WATERMARK_RATIO'] = '0.0'
os.environ['PYTORCH_MPS_LOW_WATERMARK_RATIO'] = '0.5'


class CausalSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        # key, query, value projections for all heads, but in a batch
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
        # output projection
        self.c_proj = nn.Linear(config.n_embd, config.n_embd)
        self.c_proj.NANGPT_SCALE_INIT = 1
        # regularization
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
                           .view(1, 1, config.block_size, config.block_size))

    def forward(self, x):
        B, T, C = x.size()
        qkv = self.c_attn(x)
        q, k, v = qkv.split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)

        att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
        att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
        att = F.softmax(att, dim=-1)
        y = att @ v

        y = y.transpose(1, 2).contiguous().view(B, T, C)
        y = self.c_proj(y)
        return y

class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
        self.gelu = nn.GELU(approximate='tanh')
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
        self.c_proj.NANOGPT_SCALE_INIT = 1

    def forward(self, x):
        x = self.c_fc(x)
        x = self.gelu(x)
        x = self.c_proj(x)
        return x

class Block(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln_1 = nn.LayerNorm(config.n_embd)
        self.attn = CausalSelfAttention(config)
        self.ln_2 = nn.LayerNorm(config.n_embd)
        self.mlp = MLP(config)

    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x

@dataclass
class GPTConfig:
    block_size: int = 1024
    vocab_size: int = 50257
    n_layer: int = 12
    n_head: int = 12
    n_embd: int = 768

class GPT(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.transformer = nn.ModuleDict(dict(
            wte = nn.Embedding(config.vocab_size, config.n_embd),
            wpe = nn.Embedding(config.block_size, config.n_embd),
            h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
            ln_f = nn.LayerNorm(config.n_embd),
        ))
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.transformer.wte.weight = self.lm_head.weight
        self.apply(self._init_weights)

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            std = 0.02
            if hasattr(module, 'NANGPT_SCALE_INIT'):
                std *= (2 * self.config.n_layer) ** -0.5
            torch.nn.init.normal_(module.weight, mean=0.0, std=std)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, idx, targets=None):
        B, T = idx.size()
        assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
        pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
        tok_emb = self.transformer.wte(idx)
        pos_emb = self.transformer.wpe(pos)
        x = tok_emb + pos_emb
        
        for block in self.transformer.h:
            x = block(x)
        
        x = self.transformer.ln_f(x)
        logits = self.lm_head(x)
        
        loss = None
        if targets is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
        
        return logits, loss

class DataLoaderLite:
    def __init__(self, B, T):
        self.B = B
        self.T = T
        with open('src/input.txt', 'r') as f:
            text = f.read()
        enc = tiktoken.get_encoding('gpt2')
        tokens = enc.encode(text)
        self.tokens = torch.tensor(tokens)
        print(f'loaded {len(self.tokens)} tokens')
        print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
        self.current_position = 0
    
    def next_batch(self):
        B, T = self.B, self.T
        buf = self.tokens[self.current_position: self.current_position + B * T + 1]
        x = (buf[:-1]).view(B, T)
        y = (buf[1:]).view(B, T)
        self.current_position += B*T
        if self.current_position + (B * T + 1) > len(self.tokens):
            self.current_position = 0
        return x, y


# write the main block

if __name__ == "__main__":

    # Device configuration
    device = 'cpu'
    if torch.cuda.is_available():
        device = 'cuda'
    elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
        device = "mps"
    print(f"using device: {device}")

    # Set random seed
    torch.manual_seed(1337)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(1337)

    # Initialize model and move to device
    model = GPT(GPTConfig())
    model.to(device)

    # Initialize data loader
    train_loader = DataLoaderLite(B=4, T=32)

    # Training settings
    learning_rate = 3e-4
    num_iters = 100000  # Increased to 100000
    eval_interval = 50   # Evaluate every 50 iterations
    best_loss = float('inf')
    checkpoint_dir = 'checkpoints'
    os.makedirs(checkpoint_dir, exist_ok=True)

    # Initialize optimizer
    optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)

    print(f"\n=== Starting Training ===")
    print(f"Total iterations: {num_iters}")
    print(f"Evaluation interval: {eval_interval}")
    print(f"Learning rate: {learning_rate}")

    # Training loop
    for iter in range(num_iters):
        # Get batch
        x, y = train_loader.next_batch()
        x, y = x.to(device), y.to(device)
        
        # Forward pass
        optimizer.zero_grad()
        logits, loss = model(x, y)
        
        # Backward pass
        loss.backward()
        optimizer.step()
        
        # Log progress every 50 iterations
        if iter % eval_interval == 0:
            current_loss = loss.item()
            print(f'step {iter}, loss: {current_loss:.4f}')
            
            # Save if this is the best model so far
            if current_loss < best_loss:
                best_loss = current_loss
                checkpoint_path = os.path.join(checkpoint_dir, f'model_step_{iter}_loss_{current_loss:.4f}.pt')
                torch.save({
                    'iter': iter,
                    'model_state_dict': model.state_dict(),
                    'optimizer_state_dict': optimizer.state_dict(),
                    'loss': current_loss,
                    'best_loss': best_loss,
                }, checkpoint_path)
                print(f'New best model saved! Loss: {current_loss:.4f}')
                
                # Also save as best model
                torch.save({
                    'iter': iter,
                    'model_state_dict': model.state_dict(),
                    'optimizer_state_dict': optimizer.state_dict(),
                    'loss': current_loss,
                    'best_loss': best_loss,
                }, 'best_model.pt')

    print("\n=== Training Complete ===")
    print(f"Best loss achieved: {best_loss:.4f}")

    # Save final model
    final_path = os.path.join(checkpoint_dir, 'model_final.pt')
    torch.save({
        'iter': num_iters-1,
        'model_state_dict': model.state_dict(),
        'optimizer_state_dict': optimizer.state_dict(),
        'loss': loss.item(),
        'best_loss': best_loss,
    }, final_path)