Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- README.MD +62 -0
- app.py +55 -0
- requirements.txt +7 -0
- train_shakespeare.py +247 -0
README.MD
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Shakespeare GPT
|
2 |
+
|
3 |
+
A GPT-2 model fine-tuned on Shakespeare's works, capable of generating Shakespeare-style text.
|
4 |
+
|
5 |
+
## Project Overview
|
6 |
+
|
7 |
+
This project implements a GPT-2 architecture trained on Shakespeare's works to generate Shakespeare-style text. The model uses a context window of 1024 tokens and implements various optimizations including gradient accumulation and learning rate scheduling.
|
8 |
+
|
9 |
+
## Model Architecture
|
10 |
+
|
11 |
+
- Base Architecture: GPT-2 (124M parameters)
|
12 |
+
- Layers: 12
|
13 |
+
- Heads: 12
|
14 |
+
- Embedding Dimension: 768
|
15 |
+
- Context Length: 1024 tokens
|
16 |
+
- Total Parameters: ~124M
|
17 |
+
|
18 |
+
## Training Details
|
19 |
+
|
20 |
+
- Dataset: Shakespeare's complete works
|
21 |
+
- Training Device: GPU/MPS (Apple Silicon)
|
22 |
+
- Batch Size: 16 (Effective batch size: 64 with gradient accumulation)
|
23 |
+
- Learning Rate: 6e-4 with cosine decay
|
24 |
+
- Weight Decay: 0.1
|
25 |
+
- Training Steps: 10,000
|
26 |
+
|
27 |
+
## Performance
|
28 |
+
|
29 |
+
- Best Validation Loss: [Insert your best validation loss]
|
30 |
+
- Training Time: [Insert your training time]
|
31 |
+
|
32 |
+
## Requirements
|
33 |
+
- bash
|
34 |
+
- pip install -r requirements.txt
|
35 |
+
|
36 |
+
## Project Structure
|
37 |
+
├── src/
|
38 |
+
│ ├── train_shakespeare.py # Training script
|
39 |
+
│ ├── app.py # Gradio interface
|
40 |
+
│ └── input.txt # Training data
|
41 |
+
├── requirements.txt
|
42 |
+
└── README.md
|
43 |
+
|
44 |
+
## Usage
|
45 |
+
|
46 |
+
### Training
|
47 |
+
|
48 |
+
To train the model:
|
49 |
+
|
50 |
+
bash
|
51 |
+
python src/train_shakespeare.py
|
52 |
+
|
53 |
+
|
54 |
+
### Inference
|
55 |
+
|
56 |
+
- To run the Gradio interface locally:
|
57 |
+
- bash
|
58 |
+
- python src/app.py
|
59 |
+
|
60 |
+
bash
|
61 |
+
python src/app.py
|
62 |
+
|
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import tiktoken
|
4 |
+
from train_shakespeare import GPT, GPTConfig, generate, get_autocast_device
|
5 |
+
|
6 |
+
# Initialize model and tokenizer
|
7 |
+
def init_model():
|
8 |
+
model = GPT(GPTConfig())
|
9 |
+
checkpoint = torch.load('model/best_model.pt', map_location='cpu')
|
10 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
11 |
+
model.eval()
|
12 |
+
return model
|
13 |
+
|
14 |
+
enc = tiktoken.get_encoding("gpt2")
|
15 |
+
model = init_model()
|
16 |
+
|
17 |
+
def generate_text(prompt, max_length=500, temperature=0.8, top_k=40):
|
18 |
+
# Tokenize input
|
19 |
+
input_ids = torch.tensor(enc.encode(prompt)).unsqueeze(0)
|
20 |
+
|
21 |
+
# Generate text
|
22 |
+
with torch.no_grad():
|
23 |
+
output_ids = generate(
|
24 |
+
model=model,
|
25 |
+
idx=input_ids,
|
26 |
+
max_new_tokens=max_length,
|
27 |
+
temperature=temperature,
|
28 |
+
top_k=top_k,
|
29 |
+
device='cpu' # Force CPU for Spaces
|
30 |
+
)
|
31 |
+
|
32 |
+
# Decode and return generated text
|
33 |
+
return enc.decode(output_ids[0].tolist())
|
34 |
+
|
35 |
+
# Create Gradio interface
|
36 |
+
demo = gr.Interface(
|
37 |
+
fn=generate_text,
|
38 |
+
inputs=[
|
39 |
+
gr.Textbox(label="Enter your prompt", placeholder="Start your text here..."),
|
40 |
+
gr.Slider(minimum=10, maximum=1000, value=500, step=10, label="Maximum Length"),
|
41 |
+
gr.Slider(minimum=0.1, maximum=2.0, value=0.8, step=0.1, label="Temperature"),
|
42 |
+
gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Top-k")
|
43 |
+
],
|
44 |
+
outputs=gr.Textbox(label="Generated Text"),
|
45 |
+
title="Shakespeare-style Text Generator",
|
46 |
+
description="Generate Shakespeare-style text using a fine-tuned GPT-2 model",
|
47 |
+
examples=[
|
48 |
+
["First Citizen:", 500, 0.8, 40],
|
49 |
+
["To be, or not to be,", 500, 0.8, 40],
|
50 |
+
["Friends, Romans, countrymen,", 500, 0.8, 40]
|
51 |
+
]
|
52 |
+
)
|
53 |
+
|
54 |
+
if __name__ == "__main__":
|
55 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wandb
|
2 |
+
tiktoken
|
3 |
+
torch>=2.0.0
|
4 |
+
numpy>=1.24.0
|
5 |
+
tqdm
|
6 |
+
transformers
|
7 |
+
gradio>=4.0.0
|
train_shakespeare.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import time
|
4 |
+
import inspect
|
5 |
+
from dataclasses import dataclass
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
import wandb
|
10 |
+
|
11 |
+
# Set MPS memory management
|
12 |
+
os.environ['PYTORCH_MPS_HIGH_WATERMARK_RATIO'] = '0.0'
|
13 |
+
os.environ['PYTORCH_MPS_LOW_WATERMARK_RATIO'] = '0.5'
|
14 |
+
|
15 |
+
# Initialize wandb
|
16 |
+
wandb.init(project="shakespeare-gpt", name="gpt2-124M-training")
|
17 |
+
|
18 |
+
class CausalSelfAttention(nn.Module):
|
19 |
+
def __init__(self, config):
|
20 |
+
super().__init__()
|
21 |
+
assert config.n_embd % config.n_head == 0
|
22 |
+
# key, query, value projections for all heads, but in a batch
|
23 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
24 |
+
# output projection
|
25 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
26 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
27 |
+
# regularization
|
28 |
+
self.n_head = config.n_head
|
29 |
+
self.n_embd = config.n_embd
|
30 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
|
31 |
+
.view(1, 1, config.block_size, config.block_size))
|
32 |
+
|
33 |
+
def forward(self, x):
|
34 |
+
B, T, C = x.size()
|
35 |
+
qkv = self.c_attn(x)
|
36 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
37 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
38 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
39 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
|
40 |
+
|
41 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
42 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
43 |
+
att = F.softmax(att, dim=-1)
|
44 |
+
y = att @ v
|
45 |
+
|
46 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C)
|
47 |
+
y = self.c_proj(y)
|
48 |
+
return y
|
49 |
+
|
50 |
+
class MLP(nn.Module):
|
51 |
+
def __init__(self, config):
|
52 |
+
super().__init__()
|
53 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
54 |
+
self.gelu = nn.GELU(approximate='tanh')
|
55 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
56 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
57 |
+
|
58 |
+
def forward(self, x):
|
59 |
+
x = self.c_fc(x)
|
60 |
+
x = self.gelu(x)
|
61 |
+
x = self.c_proj(x)
|
62 |
+
return x
|
63 |
+
|
64 |
+
class Block(nn.Module):
|
65 |
+
def __init__(self, config):
|
66 |
+
super().__init__()
|
67 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
68 |
+
self.attn = CausalSelfAttention(config)
|
69 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
70 |
+
self.mlp = MLP(config)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
x = x + self.attn(self.ln_1(x))
|
74 |
+
x = x + self.mlp(self.ln_2(x))
|
75 |
+
return x
|
76 |
+
|
77 |
+
@dataclass
|
78 |
+
class GPTConfig:
|
79 |
+
block_size: int = 1024
|
80 |
+
vocab_size: int = 50257
|
81 |
+
n_layer: int = 12
|
82 |
+
n_head: int = 12
|
83 |
+
n_embd: int = 768
|
84 |
+
|
85 |
+
class GPT(nn.Module):
|
86 |
+
def __init__(self, config):
|
87 |
+
super().__init__()
|
88 |
+
self.config = config
|
89 |
+
self.transformer = nn.ModuleDict(dict(
|
90 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
91 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
92 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
93 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
94 |
+
))
|
95 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
96 |
+
self.transformer.wte.weight = self.lm_head.weight
|
97 |
+
self.apply(self._init_weights)
|
98 |
+
|
99 |
+
def _init_weights(self, module):
|
100 |
+
if isinstance(module, nn.Linear):
|
101 |
+
std = 0.02
|
102 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
103 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
104 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
105 |
+
if module.bias is not None:
|
106 |
+
torch.nn.init.zeros_(module.bias)
|
107 |
+
elif isinstance(module, nn.Embedding):
|
108 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
109 |
+
|
110 |
+
def forward(self, idx, targets=None):
|
111 |
+
B, T = idx.size()
|
112 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
113 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
|
114 |
+
tok_emb = self.transformer.wte(idx)
|
115 |
+
pos_emb = self.transformer.wpe(pos)
|
116 |
+
x = tok_emb + pos_emb
|
117 |
+
|
118 |
+
for block in self.transformer.h:
|
119 |
+
x = block(x)
|
120 |
+
|
121 |
+
x = self.transformer.ln_f(x)
|
122 |
+
logits = self.lm_head(x)
|
123 |
+
|
124 |
+
loss = None
|
125 |
+
if targets is not None:
|
126 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
127 |
+
|
128 |
+
return logits, loss
|
129 |
+
|
130 |
+
class DataLoaderLite:
|
131 |
+
def __init__(self, B, T):
|
132 |
+
self.B = B
|
133 |
+
self.T = T
|
134 |
+
with open('src/input.txt', 'r') as f:
|
135 |
+
text = f.read()
|
136 |
+
enc = tiktoken.get_encoding('gpt2')
|
137 |
+
tokens = enc.encode(text)
|
138 |
+
self.tokens = torch.tensor(tokens)
|
139 |
+
print(f'loaded {len(self.tokens)} tokens')
|
140 |
+
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
|
141 |
+
self.current_position = 0
|
142 |
+
|
143 |
+
def next_batch(self):
|
144 |
+
B, T = self.B, self.T
|
145 |
+
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
146 |
+
x = (buf[:-1]).view(B, T)
|
147 |
+
y = (buf[1:]).view(B, T)
|
148 |
+
self.current_position += B*T
|
149 |
+
if self.current_position + (B * T + 1) > len(self.tokens):
|
150 |
+
self.current_position = 0
|
151 |
+
return x, y
|
152 |
+
|
153 |
+
# Device configuration
|
154 |
+
device = 'cpu'
|
155 |
+
if torch.cuda.is_available():
|
156 |
+
device = 'cuda'
|
157 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
158 |
+
device = "mps"
|
159 |
+
print(f"using device: {device}")
|
160 |
+
|
161 |
+
# Set random seed
|
162 |
+
torch.manual_seed(1337)
|
163 |
+
if torch.cuda.is_available():
|
164 |
+
torch.cuda.manual_seed(1337)
|
165 |
+
|
166 |
+
# Initialize model and move to device
|
167 |
+
model = GPT(GPTConfig())
|
168 |
+
model.to(device)
|
169 |
+
|
170 |
+
# Initialize data loader
|
171 |
+
train_loader = DataLoaderLite(B=4, T=32)
|
172 |
+
|
173 |
+
# Training settings
|
174 |
+
learning_rate = 3e-4
|
175 |
+
num_iters = 100000 # Increased to 100000
|
176 |
+
eval_interval = 50 # Evaluate every 50 iterations
|
177 |
+
best_loss = float('inf')
|
178 |
+
checkpoint_dir = 'checkpoints'
|
179 |
+
os.makedirs(checkpoint_dir, exist_ok=True)
|
180 |
+
|
181 |
+
# Initialize optimizer
|
182 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
|
183 |
+
|
184 |
+
print(f"\n=== Starting Training ===")
|
185 |
+
print(f"Total iterations: {num_iters}")
|
186 |
+
print(f"Evaluation interval: {eval_interval}")
|
187 |
+
print(f"Learning rate: {learning_rate}")
|
188 |
+
|
189 |
+
# Training loop
|
190 |
+
for iter in range(num_iters):
|
191 |
+
# Get batch
|
192 |
+
x, y = train_loader.next_batch()
|
193 |
+
x, y = x.to(device), y.to(device)
|
194 |
+
|
195 |
+
# Forward pass
|
196 |
+
optimizer.zero_grad()
|
197 |
+
logits, loss = model(x, y)
|
198 |
+
|
199 |
+
# Backward pass
|
200 |
+
loss.backward()
|
201 |
+
optimizer.step()
|
202 |
+
|
203 |
+
# Log progress every 50 iterations
|
204 |
+
if iter % eval_interval == 0:
|
205 |
+
current_loss = loss.item()
|
206 |
+
print(f'step {iter}, loss: {current_loss:.4f}')
|
207 |
+
wandb.log({
|
208 |
+
"iter": iter,
|
209 |
+
"loss": current_loss
|
210 |
+
})
|
211 |
+
|
212 |
+
# Save if this is the best model so far
|
213 |
+
if current_loss < best_loss:
|
214 |
+
best_loss = current_loss
|
215 |
+
checkpoint_path = os.path.join(checkpoint_dir, f'model_step_{iter}_loss_{current_loss:.4f}.pt')
|
216 |
+
torch.save({
|
217 |
+
'iter': iter,
|
218 |
+
'model_state_dict': model.state_dict(),
|
219 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
220 |
+
'loss': current_loss,
|
221 |
+
'best_loss': best_loss,
|
222 |
+
}, checkpoint_path)
|
223 |
+
print(f'New best model saved! Loss: {current_loss:.4f}')
|
224 |
+
|
225 |
+
# Also save as best model
|
226 |
+
torch.save({
|
227 |
+
'iter': iter,
|
228 |
+
'model_state_dict': model.state_dict(),
|
229 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
230 |
+
'loss': current_loss,
|
231 |
+
'best_loss': best_loss,
|
232 |
+
}, 'best_model.pt')
|
233 |
+
|
234 |
+
print("\n=== Training Complete ===")
|
235 |
+
print(f"Best loss achieved: {best_loss:.4f}")
|
236 |
+
|
237 |
+
# Save final model
|
238 |
+
final_path = os.path.join(checkpoint_dir, 'model_final.pt')
|
239 |
+
torch.save({
|
240 |
+
'iter': num_iters-1,
|
241 |
+
'model_state_dict': model.state_dict(),
|
242 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
243 |
+
'loss': loss.item(),
|
244 |
+
'best_loss': best_loss,
|
245 |
+
}, final_path)
|
246 |
+
|
247 |
+
wandb.finish()
|