Spaces:
Runtime error
Runtime error
File size: 6,489 Bytes
baa2a05 6e598b9 d30adf0 6e598b9 baa2a05 6e598b9 baa2a05 6e598b9 5eeb54f 6e598b9 5eeb54f 6e598b9 1946134 6e598b9 09139ad 6e598b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
#%%
from matplotlib.pyplot import title
import tensorflow as tf
from tensorflow import keras
from huggingface_hub import from_pretrained_keras
import pandas as pd
import matplotlib.pyplot as plt
import streamlit as st
from zipfile import ZipFile
import os
import datetime
import warnings
warnings.filterwarnings("ignore")
#
mylist = [0, 1, 5, 7, 8, 10, 11]
mylist = [0, 2]
df = pd.DataFrame(columns=["Date Time","p (mbar)","T (degC)","Tpot (K)","Tdew (degC)","rh (%)","VPmax (mbar)","VPact (mbar)","VPdef (mbar)","sh (g/kg)","H2OC (mmol/mol)","rho (g/m**3)","wv (m/s)","max. wv (m/s)","wd (deg)"])
if ("0" == ""):
uri = "https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip"
zip_path = keras.utils.get_file(origin=uri, fname="jena_climate_2009_2016.csv.zip")
zip_file = ZipFile(zip_path)
zip_file.extractall()
csv_path = "jena_climate_2009_2016.csv"
df = pd.read_csv(csv_path)
if ("0" != ""):
backlogmax = 4
today = datetime.date.today()
ayear = int(today.strftime("%Y"))-0
amonth = int(today.strftime("%m"))
amonthday = int(today.strftime("%d"))
adf = pd.DataFrame(columns=["Date Time","p (mbar)","T (degC)","Tpot (K)","Tdew (degC)","rh (%)","VPmax (mbar)","VPact (mbar)","VPdef (mbar)","sh (g/kg)","H2OC (mmol/mol)","rho (g/m**3)","wv (m/s)","max. wv (m/s)","wd (deg)"])
for i in range(ayear-backlogmax,ayear,1):
alink = ("https://data.weather.gov.hk/weatherAPI/opendata/opendata.php?dataType=CLMTEMP&year={}&rformat=csv&station=HKO").format(str(i))
df = pd.read_csv(alink, skiprows=[0,1,2], skipfooter=3, engine='python', on_bad_lines='skip')
df = df.reset_index() # make sure indexes pair with number of rows
for index, row in df.iterrows():
if (row[2]!=amonth) or (row[3]!=amonthday):
continue
adate = ("{:02d}.{:02d}.{} 00:00:00").format(row[3], row[2], row[1])
st.write(adate)
adf = adf.append({"Date Time":adate,"T (degC)":row[4],}, ignore_index=True)
break
df = adf
#%%
title = "Timeseries forecasting for weather prediction"
st.title('Timeseries forecasting for weather prediction')
st.write("Demonstrates how to do timeseries forecasting using a [LSTM model.](https://keras.io/api/layers/recurrent_layers/lstm/#lstm-class)This space demonstration is forecasting for weather prediction. *n* observation is selected from validation dataset." )
st.write("Keras example authors: [Prabhanshu Attri, Yashika Sharma, Kristi Takach, Falak Shah](https://keras.io/examples/timeseries/timeseries_weather_forecasting/)")
# %% model
titles = [
"Pressure",
"Temperature",
"Temperature in Kelvin",
"Temperature (dew point)",
"Relative Humidity",
"Saturation vapor pressure",
"Vapor pressure",
"Vapor pressure deficit",
"Specific humidity",
"Water vapor concentration",
"Airtight",
"Wind speed",
"Maximum wind speed",
"Wind direction in degrees",
]
feature_keys = [
"p (mbar)",
"T (degC)",
"Tpot (K)",
"Tdew (degC)",
"rh (%)",
"VPmax (mbar)",
"VPact (mbar)",
"VPdef (mbar)",
"sh (g/kg)",
"H2OC (mmol/mol)",
"rho (g/m**3)",
"wv (m/s)",
"max. wv (m/s)",
"wd (deg)",
]
date_time_key = "Date Time"
split_fraction = 0.715
train_split = int(split_fraction * int(df.shape[0]))
step = 6
past = 720
future = 72
learning_rate = 0.001
batch_size = 256
epochs = 10
def normalize(data, train_split):
data_mean = data[:train_split].mean(axis=0)
data_std = data[:train_split].std(axis=0)
return (data - data_mean) / data_std
print(
"The selected parameters are:",
", ".join([titles[i] for i in mylist]),
)
selected_features = [feature_keys[i] for i in mylist]
features = df[selected_features]
features.index = df[date_time_key]
features.head()
features = normalize(features.values, train_split)
features = pd.DataFrame(features)
features.head()
train_data = features.loc[0 : train_split - 1]
val_data = features.loc[train_split:]
split_fraction = 0.715
train_split = int(split_fraction * int(df.shape[0]))
step = 6
past = 720
future = 72
learning_rate = 0.001
batch_size = 256
epochs = 10
def normalize(data, train_split):
data_mean = data[:train_split].mean(axis=0)
data_std = data[:train_split].std(axis=0)
return (data - data_mean) / data_std
print(
"The selected parameters are:",
", ".join([titles[i] for i in mylist]),
)
selected_features = [feature_keys[i] for i in mylist]
features = df[selected_features]
features.index = df[date_time_key]
features.head()
features = normalize(features.values, train_split)
features = pd.DataFrame(features)
features.head()
train_data = features.loc[0 : train_split - 1]
val_data = features.loc[train_split:]
start = past + future
end = start + train_split
x_train = train_data[[i for i in range(7)]].values
y_train = features.iloc[start:end][[1]]
sequence_length = int(past / step)
x_end = len(val_data) - past - future
label_start = train_split + past + future
x_val = val_data.iloc[:x_end][[i for i in range(7)]].values
y_val = features.iloc[label_start:][[1]]
dataset_val = keras.preprocessing.timeseries_dataset_from_array(
x_val,
y_val,
sequence_length=sequence_length,
sampling_rate=step,
batch_size=batch_size,
)
#%%
model = from_pretrained_keras("keras-io/timeseries_forecasting_for_weather")
#%%
st.set_option('deprecation.showPyplotGlobalUse', False)
def plot():
n = st.sidebar.slider("Step", min_value = 1, max_value=5, value = 1)
def show_plot(plot_data, delta, title):
labels = ["History", "True Future", "Model Prediction"]
marker = [".-", "rx", "go"]
time_steps = list(range(-(plot_data[0].shape[0]), 0))
if delta:
future = delta
else:
future = 0
plt.title(title)
for i, val in enumerate(plot_data):
if i:
plt.plot(future, plot_data[i], marker[i], markersize=10, label=labels[i])
else:
plt.plot(time_steps, plot_data[i].flatten(), marker[i], label=labels[i])
plt.legend(loc='lower center', bbox_to_anchor=(0.5, 1.05),
ncol=3, fancybox=True, shadow=True)
plt.xlim([time_steps[0], (future + 5) * 2])
plt.xlabel("Time-Step")
plt.show()
return
for x, y in dataset_val.take(n):
show_plot(
[x[0][:, 1].numpy(), y[0].numpy(), model.predict(x)[0]],
12,
f"{n} Step Prediction",
)
fig = plot()
st.pyplot(fig)
# %%
|