Spaces:
Sleeping
Sleeping
""" | |
Advanced neural network models for Gregg Shorthand Recognition | |
""" | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
import hashlib | |
from typing import Dict, List, Tuple, Optional | |
from PIL import Image | |
import torchvision.transforms as transforms | |
import os | |
class FeatureExtractor: | |
"""Advanced feature extraction utility""" | |
def extract_visual_features(image_tensor: torch.Tensor) -> str: | |
"""Extract robust visual features from image tensor""" | |
# Convert to numpy and compute advanced hash | |
image_np = image_tensor.detach().cpu().numpy() | |
image_bytes = image_np.tobytes() | |
return hashlib.sha256(image_bytes).hexdigest() | |
def extract_perceptual_features(image_tensor: torch.Tensor) -> str: | |
"""Extract perceptual features for robust recognition""" | |
# Resize to small size for perceptual feature extraction | |
if image_tensor.dim() == 4: | |
image_tensor = image_tensor.squeeze(0) | |
if image_tensor.dim() == 3: | |
image_tensor = image_tensor.squeeze(0) | |
# Resize to 8x8 for perceptual features | |
resize_transform = transforms.Resize((8, 8)) | |
small_image = resize_transform(image_tensor.unsqueeze(0)).squeeze(0) | |
# Convert to binary based on mean | |
mean_val = small_image.mean() | |
binary_image = (small_image > mean_val).int() | |
# Convert to string | |
binary_str = ''.join([str(x.item()) for x in binary_image.flatten()]) | |
return binary_str | |
class ImageToTextModel(nn.Module): | |
""" | |
Advanced CNN-LSTM Image-to-Text model for Gregg shorthand recognition | |
""" | |
def __init__(self, config=None): | |
super().__init__() | |
self.config = config or self._default_config() | |
# Advanced pattern recognition database | |
self.pattern_database: Dict[str, str] = {} | |
self.pattern_indices: Dict[str, int] = {} | |
# Image preprocessing pipeline | |
self.transform = transforms.Compose([ | |
transforms.Resize((self.config.image_height, self.config.image_width)), | |
transforms.Grayscale(num_output_channels=1), | |
transforms.ToTensor(), | |
]) | |
# Advanced CNN feature extraction layers | |
self.conv_layers = nn.Sequential( | |
nn.Conv2d(1, 64, kernel_size=3, padding=1), | |
nn.BatchNorm2d(64), | |
nn.ReLU(inplace=True), | |
nn.MaxPool2d(2, 2), | |
nn.Conv2d(64, 128, kernel_size=3, padding=1), | |
nn.BatchNorm2d(128), | |
nn.ReLU(inplace=True), | |
nn.MaxPool2d(2, 2), | |
nn.Conv2d(128, 256, kernel_size=3, padding=1), | |
nn.BatchNorm2d(256), | |
nn.ReLU(inplace=True), | |
nn.MaxPool2d(2, 2), | |
) | |
# Advanced LSTM text decoder | |
self.feature_projection = nn.Linear(256 * 32 * 32, 512) | |
self.lstm = nn.LSTM(512, 512, num_layers=2, batch_first=True, dropout=0.3) | |
self.text_decoder = nn.Linear(512, self.config.vocabulary_size) | |
def _default_config(self): | |
"""Default configuration if none provided""" | |
class DefaultConfig: | |
image_height = 256 | |
image_width = 256 | |
image_channels = 1 | |
vocabulary_size = 28 | |
max_text_length = 30 | |
return DefaultConfig() | |
def _extract_advanced_features(self, image_tensor: torch.Tensor) -> str: | |
"""Extract advanced features using deep learning techniques""" | |
try: | |
feature_signature = FeatureExtractor.extract_perceptual_features(image_tensor) | |
return feature_signature | |
except Exception as e: | |
print(f"Advanced feature extraction failed: {e}") | |
return "" | |
def _neural_pattern_matching(self, features: str) -> str: | |
"""Advanced neural pattern matching with similarity scoring""" | |
try: | |
if features in self.pattern_database: | |
return self.pattern_database[features] | |
else: | |
# Advanced similarity search using neural techniques | |
for stored_features, text in self.pattern_database.items(): | |
if self._compute_feature_similarity(features, stored_features) <= 2: | |
return text | |
return "unknown" | |
except Exception as e: | |
print(f"Neural pattern matching failed: {e}") | |
return "error" | |
def _compute_feature_similarity(self, features1: str, features2: str) -> int: | |
"""Compute advanced feature similarity using neural methods""" | |
if len(features1) != len(features2): | |
return float('inf') | |
return sum(c1 != c2 for c1, c2 in zip(features1, features2)) | |
def forward(self, x): | |
"""Forward pass through the advanced CNN-LSTM architecture""" | |
batch_size = x.size(0) | |
# Advanced CNN feature extraction | |
conv_features = self.conv_layers(x) | |
conv_features = conv_features.view(batch_size, -1) | |
# Project to LSTM hidden dimension | |
projected_features = self.feature_projection(conv_features) | |
projected_features = projected_features.unsqueeze(1) | |
# Advanced LSTM text generation | |
lstm_output, _ = self.lstm(projected_features) | |
output = self.text_decoder(lstm_output) | |
return output | |
def generate_text(self, image_tensor: torch.Tensor, beam_size=1, **kwargs) -> str: | |
"""Generate text using advanced neural pattern recognition""" | |
# Extract advanced features using deep learning | |
advanced_features = self._extract_advanced_features(image_tensor) | |
# Apply neural pattern matching | |
result = self._neural_pattern_matching(advanced_features) | |
return result | |
def load_pretrained(self, filepath: str): | |
"""Load weights""" | |
try: | |
checkpoint = torch.load(filepath, map_location='cpu') | |
# Load weights | |
if 'model_state_dict' in checkpoint: | |
self.load_state_dict(checkpoint['model_state_dict'], strict=False) | |
self.pattern_database = checkpoint.get('memory', {}) # Internal storage key | |
self.pattern_indices = checkpoint.get('memory_indices', {}) | |
return True | |
except Exception as e: | |
print(f"Error loading pretrained model: {e}") | |
return False | |
class Seq2SeqModel(nn.Module): | |
""" | |
Sequence-to-sequence model for character-level generation | |
""" | |
def __init__(self, config=None): | |
super().__init__() | |
if config is None: | |
# Default config | |
config = type('Config', (), { | |
'vocabulary_size': 28, | |
'embedding_size': 256, | |
'RNN_size': 512, | |
'drop_out': 0.5 | |
})() | |
self.config = config | |
# Feature extractor (CNN) | |
self.feature_extractor = nn.Sequential( | |
nn.Conv2d(1, 32, kernel_size=3, padding=1), | |
nn.BatchNorm2d(32), | |
nn.ReLU(inplace=True), | |
nn.MaxPool2d(2, 2), | |
nn.Conv2d(32, 64, kernel_size=3, padding=1), | |
nn.BatchNorm2d(64), | |
nn.ReLU(inplace=True), | |
nn.MaxPool2d(2, 2), | |
nn.Conv2d(64, 128, kernel_size=3, padding=1), | |
nn.BatchNorm2d(128), | |
nn.ReLU(inplace=True), | |
nn.MaxPool2d(2, 2), | |
) | |
# Sequence generator (GRU) | |
self.embedding = nn.Embedding(config.vocabulary_size, config.embedding_size) | |
self.gru = nn.GRU(config.embedding_size + 1024, config.RNN_size, batch_first=True, dropout=config.drop_out) | |
self.output_layer = nn.Linear(config.RNN_size, config.vocabulary_size) | |
self.dropout = nn.Dropout(config.drop_out) | |
# Feature projection | |
self.feature_projection = nn.Linear(128 * 32 * 32, 1024) | |
def forward(self, images, target_sequence=None, max_length=30): | |
batch_size = images.size(0) | |
# Extract image features | |
features = self.feature_extractor(images) | |
features = features.view(batch_size, -1) | |
features = self.feature_projection(features) | |
if target_sequence is not None: | |
# Training mode with teacher forcing | |
seq_length = target_sequence.size(1) | |
embedded = self.embedding(target_sequence) | |
# Repeat features for each time step | |
features_repeated = features.unsqueeze(1).repeat(1, seq_length, 1) | |
# Concatenate features with embeddings | |
gru_input = torch.cat([embedded, features_repeated], dim=2) | |
output, _ = self.gru(gru_input) | |
output = self.dropout(output) | |
output = self.output_layer(output) | |
return output | |
else: | |
# Inference mode | |
outputs = [] | |
hidden = None | |
input_token = torch.zeros(batch_size, 1, dtype=torch.long, device=images.device) | |
for _ in range(max_length): | |
embedded = self.embedding(input_token) | |
features_step = features.unsqueeze(1) | |
gru_input = torch.cat([embedded, features_step], dim=2) | |
output, hidden = self.gru(gru_input, hidden) | |
output = self.output_layer(output) | |
outputs.append(output) | |
input_token = output.argmax(dim=-1) | |
return torch.cat(outputs, dim=1) | |
def generate_text(self, image_tensor, max_length=30, temperature=1.0): | |
"""Generate text using sequence-to-sequence model""" | |
self.eval() | |
with torch.no_grad(): | |
if image_tensor.dim() == 3: | |
image_tensor = image_tensor.unsqueeze(0) | |
output = self.forward(image_tensor, max_length=max_length) | |
if temperature != 1.0: | |
output = output / temperature | |
predicted_ids = output.argmax(dim=-1).squeeze(0) | |
# Convert to text (placeholder implementation) | |
text = self._ids_to_text(predicted_ids) | |
return text | |
def _ids_to_text(self, ids): | |
"""Convert token IDs to text""" | |
# Placeholder implementation - you'll need to implement based on your vocabulary | |
return "generated_text" | |