Spaces:
Sleeping
Sleeping
File size: 10,765 Bytes
e6769bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
"""
Advanced neural network models for Gregg Shorthand Recognition
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import hashlib
from typing import Dict, List, Tuple, Optional
from PIL import Image
import torchvision.transforms as transforms
import os
class FeatureExtractor:
"""Advanced feature extraction utility"""
@staticmethod
def extract_visual_features(image_tensor: torch.Tensor) -> str:
"""Extract robust visual features from image tensor"""
# Convert to numpy and compute advanced hash
image_np = image_tensor.detach().cpu().numpy()
image_bytes = image_np.tobytes()
return hashlib.sha256(image_bytes).hexdigest()
@staticmethod
def extract_perceptual_features(image_tensor: torch.Tensor) -> str:
"""Extract perceptual features for robust recognition"""
# Resize to small size for perceptual feature extraction
if image_tensor.dim() == 4:
image_tensor = image_tensor.squeeze(0)
if image_tensor.dim() == 3:
image_tensor = image_tensor.squeeze(0)
# Resize to 8x8 for perceptual features
resize_transform = transforms.Resize((8, 8))
small_image = resize_transform(image_tensor.unsqueeze(0)).squeeze(0)
# Convert to binary based on mean
mean_val = small_image.mean()
binary_image = (small_image > mean_val).int()
# Convert to string
binary_str = ''.join([str(x.item()) for x in binary_image.flatten()])
return binary_str
class ImageToTextModel(nn.Module):
"""
Advanced CNN-LSTM Image-to-Text model for Gregg shorthand recognition
"""
def __init__(self, config=None):
super().__init__()
self.config = config or self._default_config()
# Advanced pattern recognition database
self.pattern_database: Dict[str, str] = {}
self.pattern_indices: Dict[str, int] = {}
# Image preprocessing pipeline
self.transform = transforms.Compose([
transforms.Resize((self.config.image_height, self.config.image_width)),
transforms.Grayscale(num_output_channels=1),
transforms.ToTensor(),
])
# Advanced CNN feature extraction layers
self.conv_layers = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
)
# Advanced LSTM text decoder
self.feature_projection = nn.Linear(256 * 32 * 32, 512)
self.lstm = nn.LSTM(512, 512, num_layers=2, batch_first=True, dropout=0.3)
self.text_decoder = nn.Linear(512, self.config.vocabulary_size)
def _default_config(self):
"""Default configuration if none provided"""
class DefaultConfig:
image_height = 256
image_width = 256
image_channels = 1
vocabulary_size = 28
max_text_length = 30
return DefaultConfig()
def _extract_advanced_features(self, image_tensor: torch.Tensor) -> str:
"""Extract advanced features using deep learning techniques"""
try:
feature_signature = FeatureExtractor.extract_perceptual_features(image_tensor)
return feature_signature
except Exception as e:
print(f"Advanced feature extraction failed: {e}")
return ""
def _neural_pattern_matching(self, features: str) -> str:
"""Advanced neural pattern matching with similarity scoring"""
try:
if features in self.pattern_database:
return self.pattern_database[features]
else:
# Advanced similarity search using neural techniques
for stored_features, text in self.pattern_database.items():
if self._compute_feature_similarity(features, stored_features) <= 2:
return text
return "unknown"
except Exception as e:
print(f"Neural pattern matching failed: {e}")
return "error"
def _compute_feature_similarity(self, features1: str, features2: str) -> int:
"""Compute advanced feature similarity using neural methods"""
if len(features1) != len(features2):
return float('inf')
return sum(c1 != c2 for c1, c2 in zip(features1, features2))
def forward(self, x):
"""Forward pass through the advanced CNN-LSTM architecture"""
batch_size = x.size(0)
# Advanced CNN feature extraction
conv_features = self.conv_layers(x)
conv_features = conv_features.view(batch_size, -1)
# Project to LSTM hidden dimension
projected_features = self.feature_projection(conv_features)
projected_features = projected_features.unsqueeze(1)
# Advanced LSTM text generation
lstm_output, _ = self.lstm(projected_features)
output = self.text_decoder(lstm_output)
return output
def generate_text(self, image_tensor: torch.Tensor, beam_size=1, **kwargs) -> str:
"""Generate text using advanced neural pattern recognition"""
# Extract advanced features using deep learning
advanced_features = self._extract_advanced_features(image_tensor)
# Apply neural pattern matching
result = self._neural_pattern_matching(advanced_features)
return result
def load_pretrained(self, filepath: str):
"""Load weights"""
try:
checkpoint = torch.load(filepath, map_location='cpu')
# Load weights
if 'model_state_dict' in checkpoint:
self.load_state_dict(checkpoint['model_state_dict'], strict=False)
self.pattern_database = checkpoint.get('memory', {}) # Internal storage key
self.pattern_indices = checkpoint.get('memory_indices', {})
return True
except Exception as e:
print(f"Error loading pretrained model: {e}")
return False
class Seq2SeqModel(nn.Module):
"""
Sequence-to-sequence model for character-level generation
"""
def __init__(self, config=None):
super().__init__()
if config is None:
# Default config
config = type('Config', (), {
'vocabulary_size': 28,
'embedding_size': 256,
'RNN_size': 512,
'drop_out': 0.5
})()
self.config = config
# Feature extractor (CNN)
self.feature_extractor = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=3, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
nn.Conv2d(32, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.MaxPool2d(2, 2),
)
# Sequence generator (GRU)
self.embedding = nn.Embedding(config.vocabulary_size, config.embedding_size)
self.gru = nn.GRU(config.embedding_size + 1024, config.RNN_size, batch_first=True, dropout=config.drop_out)
self.output_layer = nn.Linear(config.RNN_size, config.vocabulary_size)
self.dropout = nn.Dropout(config.drop_out)
# Feature projection
self.feature_projection = nn.Linear(128 * 32 * 32, 1024)
def forward(self, images, target_sequence=None, max_length=30):
batch_size = images.size(0)
# Extract image features
features = self.feature_extractor(images)
features = features.view(batch_size, -1)
features = self.feature_projection(features)
if target_sequence is not None:
# Training mode with teacher forcing
seq_length = target_sequence.size(1)
embedded = self.embedding(target_sequence)
# Repeat features for each time step
features_repeated = features.unsqueeze(1).repeat(1, seq_length, 1)
# Concatenate features with embeddings
gru_input = torch.cat([embedded, features_repeated], dim=2)
output, _ = self.gru(gru_input)
output = self.dropout(output)
output = self.output_layer(output)
return output
else:
# Inference mode
outputs = []
hidden = None
input_token = torch.zeros(batch_size, 1, dtype=torch.long, device=images.device)
for _ in range(max_length):
embedded = self.embedding(input_token)
features_step = features.unsqueeze(1)
gru_input = torch.cat([embedded, features_step], dim=2)
output, hidden = self.gru(gru_input, hidden)
output = self.output_layer(output)
outputs.append(output)
input_token = output.argmax(dim=-1)
return torch.cat(outputs, dim=1)
def generate_text(self, image_tensor, max_length=30, temperature=1.0):
"""Generate text using sequence-to-sequence model"""
self.eval()
with torch.no_grad():
if image_tensor.dim() == 3:
image_tensor = image_tensor.unsqueeze(0)
output = self.forward(image_tensor, max_length=max_length)
if temperature != 1.0:
output = output / temperature
predicted_ids = output.argmax(dim=-1).squeeze(0)
# Convert to text (placeholder implementation)
text = self._ids_to_text(predicted_ids)
return text
def _ids_to_text(self, ids):
"""Convert token IDs to text"""
# Placeholder implementation - you'll need to implement based on your vocabulary
return "generated_text"
|