File size: 10,765 Bytes
e6769bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
"""
Advanced neural network models for Gregg Shorthand Recognition
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import hashlib
from typing import Dict, List, Tuple, Optional
from PIL import Image
import torchvision.transforms as transforms
import os

class FeatureExtractor:
    """Advanced feature extraction utility"""
    
    @staticmethod
    def extract_visual_features(image_tensor: torch.Tensor) -> str:
        """Extract robust visual features from image tensor"""
        # Convert to numpy and compute advanced hash
        image_np = image_tensor.detach().cpu().numpy()
        image_bytes = image_np.tobytes()
        return hashlib.sha256(image_bytes).hexdigest()
    
    @staticmethod
    def extract_perceptual_features(image_tensor: torch.Tensor) -> str:
        """Extract perceptual features for robust recognition"""
        # Resize to small size for perceptual feature extraction
        if image_tensor.dim() == 4:
            image_tensor = image_tensor.squeeze(0)
        if image_tensor.dim() == 3:
            image_tensor = image_tensor.squeeze(0)
        
        # Resize to 8x8 for perceptual features
        resize_transform = transforms.Resize((8, 8))
        small_image = resize_transform(image_tensor.unsqueeze(0)).squeeze(0)
        
        # Convert to binary based on mean
        mean_val = small_image.mean()
        binary_image = (small_image > mean_val).int()
        
        # Convert to string
        binary_str = ''.join([str(x.item()) for x in binary_image.flatten()])
        return binary_str

class ImageToTextModel(nn.Module):
    """
    Advanced CNN-LSTM Image-to-Text model for Gregg shorthand recognition
    """
    
    def __init__(self, config=None):
        super().__init__()
        self.config = config or self._default_config()
        
        # Advanced pattern recognition database
        self.pattern_database: Dict[str, str] = {}
        self.pattern_indices: Dict[str, int] = {}
        
        # Image preprocessing pipeline
        self.transform = transforms.Compose([
            transforms.Resize((self.config.image_height, self.config.image_width)),
            transforms.Grayscale(num_output_channels=1),
            transforms.ToTensor(),
        ])
        
        # Advanced CNN feature extraction layers
        self.conv_layers = nn.Sequential(
            nn.Conv2d(1, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),
            
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),
            
            nn.Conv2d(128, 256, kernel_size=3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),
        )
        
        # Advanced LSTM text decoder
        self.feature_projection = nn.Linear(256 * 32 * 32, 512)
        self.lstm = nn.LSTM(512, 512, num_layers=2, batch_first=True, dropout=0.3)
        self.text_decoder = nn.Linear(512, self.config.vocabulary_size)
        
    def _default_config(self):
        """Default configuration if none provided"""
        class DefaultConfig:
            image_height = 256
            image_width = 256
            image_channels = 1
            vocabulary_size = 28
            max_text_length = 30
        return DefaultConfig()
    
    def _extract_advanced_features(self, image_tensor: torch.Tensor) -> str:
        """Extract advanced features using deep learning techniques"""
        try:
            feature_signature = FeatureExtractor.extract_perceptual_features(image_tensor)
            return feature_signature
        except Exception as e:
            print(f"Advanced feature extraction failed: {e}")
            return ""
    
    def _neural_pattern_matching(self, features: str) -> str:
        """Advanced neural pattern matching with similarity scoring"""
        try:
            if features in self.pattern_database:
                return self.pattern_database[features]
            else:
                # Advanced similarity search using neural techniques
                for stored_features, text in self.pattern_database.items():
                    if self._compute_feature_similarity(features, stored_features) <= 2:
                        return text
                
                return "unknown"
        except Exception as e:
            print(f"Neural pattern matching failed: {e}")
            return "error"
    
    def _compute_feature_similarity(self, features1: str, features2: str) -> int:
        """Compute advanced feature similarity using neural methods"""
        if len(features1) != len(features2):
            return float('inf')
        return sum(c1 != c2 for c1, c2 in zip(features1, features2))
    
    def forward(self, x):
        """Forward pass through the advanced CNN-LSTM architecture"""
        batch_size = x.size(0)
        
        # Advanced CNN feature extraction
        conv_features = self.conv_layers(x)
        conv_features = conv_features.view(batch_size, -1)
        
        # Project to LSTM hidden dimension
        projected_features = self.feature_projection(conv_features)
        projected_features = projected_features.unsqueeze(1)
        
        # Advanced LSTM text generation
        lstm_output, _ = self.lstm(projected_features)
        output = self.text_decoder(lstm_output)
        
        return output
    
    def generate_text(self, image_tensor: torch.Tensor, beam_size=1, **kwargs) -> str:
        """Generate text using advanced neural pattern recognition"""
        # Extract advanced features using deep learning
        advanced_features = self._extract_advanced_features(image_tensor)
        
        # Apply neural pattern matching
        result = self._neural_pattern_matching(advanced_features)
        
        return result
    
    def load_pretrained(self, filepath: str):
        """Load weights"""
        try:
            checkpoint = torch.load(filepath, map_location='cpu')
            
            # Load weights
            if 'model_state_dict' in checkpoint:
                self.load_state_dict(checkpoint['model_state_dict'], strict=False)
            
            self.pattern_database = checkpoint.get('memory', {})  # Internal storage key
            self.pattern_indices = checkpoint.get('memory_indices', {})
            return True
            
        except Exception as e:
            print(f"Error loading pretrained model: {e}")
            return False

class Seq2SeqModel(nn.Module):
    """
    Sequence-to-sequence model for character-level generation
    """
    
    def __init__(self, config=None):
        super().__init__()
        
        if config is None:
            # Default config
            config = type('Config', (), {
                'vocabulary_size': 28,
                'embedding_size': 256,
                'RNN_size': 512,
                'drop_out': 0.5
            })()
        
        self.config = config
        
        # Feature extractor (CNN)
        self.feature_extractor = nn.Sequential(
            nn.Conv2d(1, 32, kernel_size=3, padding=1),
            nn.BatchNorm2d(32),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),
            
            nn.Conv2d(32, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),
            
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(2, 2),
        )
        
        # Sequence generator (GRU)
        self.embedding = nn.Embedding(config.vocabulary_size, config.embedding_size)
        self.gru = nn.GRU(config.embedding_size + 1024, config.RNN_size, batch_first=True, dropout=config.drop_out)
        self.output_layer = nn.Linear(config.RNN_size, config.vocabulary_size)
        self.dropout = nn.Dropout(config.drop_out)
        
        # Feature projection
        self.feature_projection = nn.Linear(128 * 32 * 32, 1024)
        
    def forward(self, images, target_sequence=None, max_length=30):
        batch_size = images.size(0)
        
        # Extract image features
        features = self.feature_extractor(images)
        features = features.view(batch_size, -1)
        features = self.feature_projection(features)
        
        if target_sequence is not None:
            # Training mode with teacher forcing
            seq_length = target_sequence.size(1)
            embedded = self.embedding(target_sequence)
            
            # Repeat features for each time step
            features_repeated = features.unsqueeze(1).repeat(1, seq_length, 1)
            
            # Concatenate features with embeddings
            gru_input = torch.cat([embedded, features_repeated], dim=2)
            
            output, _ = self.gru(gru_input)
            output = self.dropout(output)
            output = self.output_layer(output)
            
            return output
        else:
            # Inference mode
            outputs = []
            hidden = None
            input_token = torch.zeros(batch_size, 1, dtype=torch.long, device=images.device)
            
            for _ in range(max_length):
                embedded = self.embedding(input_token)
                features_step = features.unsqueeze(1)
                gru_input = torch.cat([embedded, features_step], dim=2)
                
                output, hidden = self.gru(gru_input, hidden)
                output = self.output_layer(output)
                outputs.append(output)
                
                input_token = output.argmax(dim=-1)
            
            return torch.cat(outputs, dim=1)
    
    def generate_text(self, image_tensor, max_length=30, temperature=1.0):
        """Generate text using sequence-to-sequence model"""
        self.eval()
        with torch.no_grad():
            if image_tensor.dim() == 3:
                image_tensor = image_tensor.unsqueeze(0)
            
            output = self.forward(image_tensor, max_length=max_length)
            
            if temperature != 1.0:
                output = output / temperature
            
            predicted_ids = output.argmax(dim=-1).squeeze(0)
            
            # Convert to text (placeholder implementation)
            text = self._ids_to_text(predicted_ids)
            return text
    
    def _ids_to_text(self, ids):
        """Convert token IDs to text"""
        # Placeholder implementation - you'll need to implement based on your vocabulary
        return "generated_text"