Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
import faiss
|
2 |
import numpy as np
|
3 |
-
from fastapi import FastAPI
|
4 |
from fastapi.responses import JSONResponse
|
5 |
from datasets import load_dataset
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
-
from typing import List
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
@@ -29,65 +29,76 @@ print("Loading sentence transformer model (all-MiniLM-L6-v2)...")
|
|
29 |
model = SentenceTransformer("all-MiniLM-L6-v2")
|
30 |
print("Model loaded successfully.")
|
31 |
|
32 |
-
def load_and_index_dataset(name: str, include_readme: bool = False):
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
59 |
|
60 |
for key, readme_flag in {"packages": True, "programs": True}.items():
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
@app.get("/searchPackages/")
|
84 |
-
def search_packages(q: str, k: int = 10):
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
88 |
|
89 |
@app.get("/searchPrograms/")
|
90 |
-
def search_programs(q: str, k: int = 10):
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
1 |
import faiss
|
2 |
import numpy as np
|
3 |
+
from fastapi import FastAPI, Query, HTTPException
|
4 |
from fastapi.responses import JSONResponse
|
5 |
from datasets import load_dataset
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
+
from typing import List, Dict, Tuple
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
|
|
29 |
model = SentenceTransformer("all-MiniLM-L6-v2")
|
30 |
print("Model loaded successfully.")
|
31 |
|
32 |
+
def load_and_index_dataset(name: str, include_readme: bool = False) -> Tuple[faiss.IndexFlatL2, List[Dict]]:
|
33 |
+
try:
|
34 |
+
print(f"Loading dataset '{name}'...")
|
35 |
+
dataset = load_dataset(name)["train"]
|
36 |
+
|
37 |
+
repo_texts = [
|
38 |
+
" ".join(str(x.get(field, "")) for field in FIELDS) +
|
39 |
+
(" " + x.get("readme_content", "") if include_readme else "") +
|
40 |
+
" " + " ".join(x.get("topics", []))
|
41 |
+
for x in dataset
|
42 |
+
]
|
43 |
+
|
44 |
+
if not include_readme:
|
45 |
+
dataset = [{k: v for k, v in item.items() if k != "readme_content"} for item in dataset]
|
46 |
+
|
47 |
+
print(f"Creating embeddings for {len(repo_texts)} documents in '{name}'...")
|
48 |
+
repo_embeddings = model.encode(repo_texts, show_progress_bar=True)
|
49 |
+
|
50 |
+
embedding_dim = repo_embeddings.shape[1]
|
51 |
+
index = faiss.IndexFlatL2(embedding_dim)
|
52 |
+
index.add(np.array(repo_embeddings, dtype=np.float32))
|
53 |
+
|
54 |
+
print(f"'{name}' dataset indexed with {index.ntotal} vectors.")
|
55 |
+
return index, list(dataset)
|
56 |
+
except Exception as e:
|
57 |
+
print(f"Error loading dataset '{name}': {e}")
|
58 |
+
raise RuntimeError(f"Dataset loading/indexing failed: {name}")
|
59 |
+
|
60 |
+
indices: Dict[str, Tuple[faiss.IndexFlatL2, List[Dict]]] = {}
|
61 |
|
62 |
for key, readme_flag in {"packages": True, "programs": True}.items():
|
63 |
+
try:
|
64 |
+
index, data = load_and_index_dataset(f"zigistry/{key}", include_readme=readme_flag)
|
65 |
+
indices[key] = (index, data)
|
66 |
+
except Exception as e:
|
67 |
+
print(f"Failed to prepare index for {key}: {e}")
|
68 |
+
indices[key] = (None, [])
|
69 |
+
|
70 |
+
def perform_search(query: str, dataset_key: str, k: int) -> List[Dict]:
|
71 |
+
index, dataset = indices.get(dataset_key, (None, []))
|
72 |
+
if not index:
|
73 |
+
raise HTTPException(status_code=500, detail=f"Index not available for {dataset_key}")
|
74 |
+
|
75 |
+
try:
|
76 |
+
query_embedding = model.encode([query])
|
77 |
+
distances, idxs = index.search(np.array(query_embedding, dtype=np.float32), k)
|
78 |
+
|
79 |
+
results = []
|
80 |
+
for dist, idx in zip(distances[0], idxs[0]):
|
81 |
+
if idx == -1:
|
82 |
+
continue
|
83 |
+
item = dataset[int(idx)].copy()
|
84 |
+
item["relevance_score"] = float(1.0 - dist / 2.0)
|
85 |
+
results.append(item)
|
86 |
+
|
87 |
+
return results
|
88 |
+
except Exception as e:
|
89 |
+
print(f"Error during search: {e}")
|
90 |
+
raise HTTPException(status_code=500, detail="Search failed")
|
91 |
|
92 |
@app.get("/searchPackages/")
|
93 |
+
def search_packages(q: str = Query(...), k: int = Query(10)) -> JSONResponse:
|
94 |
+
if not q:
|
95 |
+
raise HTTPException(status_code=400, detail="Query parameter 'q' is required.")
|
96 |
+
results = perform_search(q, "packages", k)
|
97 |
+
return JSONResponse(content=results, headers={"Access-Control-Allow-Origin": "*"})
|
98 |
|
99 |
@app.get("/searchPrograms/")
|
100 |
+
def search_programs(q: str = Query(...), k: int = Query(10)) -> JSONResponse:
|
101 |
+
if not q:
|
102 |
+
raise HTTPException(status_code=400, detail="Query parameter 'q' is required.")
|
103 |
+
results = perform_search(q, "programs", k)
|
104 |
+
return JSONResponse(content=results, headers={"Access-Control-Allow-Origin": "*"})
|