Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
import faiss
|
2 |
import numpy as np
|
3 |
-
from fastapi import FastAPI
|
4 |
from fastapi.responses import JSONResponse
|
5 |
from datasets import load_dataset
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
-
from typing import List
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
@@ -25,62 +25,69 @@ FIELDS = (
|
|
25 |
"created_at",
|
26 |
)
|
27 |
|
|
|
28 |
model = SentenceTransformer("all-MiniLM-L6-v2")
|
|
|
29 |
|
30 |
-
def
|
|
|
31 |
dataset = load_dataset(name)["train"]
|
|
|
32 |
repo_texts = [
|
33 |
" ".join(str(x.get(field, "")) for field in FIELDS) +
|
34 |
(" " + x.get("readme_content", "") if include_readme else "") +
|
35 |
" " + " ".join(x.get("topics", []))
|
36 |
for x in dataset
|
37 |
]
|
|
|
38 |
if not include_readme:
|
39 |
dataset = [{k: v for k, v in item.items() if k != "readme_content"} for item in dataset]
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
"
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
indices = {}
|
48 |
-
for key, (dataset, repo_texts) in datasets.items():
|
49 |
-
repo_embeddings = model.encode(repo_texts)
|
50 |
-
index = faiss.IndexFlatL2(repo_embeddings.shape[1])
|
51 |
-
index.add(np.array(repo_embeddings))
|
52 |
-
indices[key] = (index, dataset)
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
min_distance = np.min(distances)
|
58 |
-
max_distance = np.max(distances)
|
59 |
-
threshold = min_distance + ((max_distance - min_distance) * threshold_ratio)
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
return results
|
67 |
|
68 |
@app.get("/searchPackages/")
|
69 |
-
def search_packages(q: str):
|
70 |
-
|
71 |
-
index, dataset = indices[key]
|
72 |
-
query_embedding = model.encode([q])
|
73 |
-
distances, idxs = index.search(np.array(query_embedding), len(dataset))
|
74 |
-
results = filter_results_by_distance(distances[0], idxs[0], dataset)
|
75 |
headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"}
|
76 |
return JSONResponse(content=results, headers=headers)
|
77 |
|
78 |
@app.get("/searchPrograms/")
|
79 |
-
def search_programs(q: str):
|
80 |
-
|
81 |
-
index, dataset = indices[key]
|
82 |
-
query_embedding = model.encode([q])
|
83 |
-
distances, idxs = index.search(np.array(query_embedding), len(dataset))
|
84 |
-
results = filter_results_by_distance(distances[0], idxs[0], dataset)
|
85 |
headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"}
|
86 |
-
return JSONResponse(content=results, headers=headers)
|
|
|
1 |
import faiss
|
2 |
import numpy as np
|
3 |
+
from fastapi import FastAPI
|
4 |
from fastapi.responses import JSONResponse
|
5 |
from datasets import load_dataset
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
+
from typing import List
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
|
|
25 |
"created_at",
|
26 |
)
|
27 |
|
28 |
+
print("Loading sentence transformer model (all-MiniLM-L6-v2)...")
|
29 |
model = SentenceTransformer("all-MiniLM-L6-v2")
|
30 |
+
print("Model loaded successfully.")
|
31 |
|
32 |
+
def load_and_index_dataset(name: str, include_readme: bool = False):
|
33 |
+
print(f"Loading dataset '{name}'...")
|
34 |
dataset = load_dataset(name)["train"]
|
35 |
+
|
36 |
repo_texts = [
|
37 |
" ".join(str(x.get(field, "")) for field in FIELDS) +
|
38 |
(" " + x.get("readme_content", "") if include_readme else "") +
|
39 |
" " + " ".join(x.get("topics", []))
|
40 |
for x in dataset
|
41 |
]
|
42 |
+
|
43 |
if not include_readme:
|
44 |
dataset = [{k: v for k, v in item.items() if k != "readme_content"} for item in dataset]
|
45 |
+
|
46 |
+
print(f"Creating embeddings for {len(repo_texts)} documents in '{name}'...")
|
47 |
+
repo_embeddings = model.encode(repo_texts, show_progress_bar=True)
|
48 |
+
|
49 |
+
print(f"Building FAISS index for '{name}'...")
|
50 |
+
embedding_dim = repo_embeddings.shape[1]
|
51 |
+
|
52 |
+
index = faiss.IndexFlatL2(embedding_dim)
|
53 |
+
index.add(np.array(repo_embeddings, dtype=np.float32))
|
54 |
+
|
55 |
+
print(f"'{name}' dataset indexed with {index.ntotal} vectors.")
|
56 |
+
return index, list(dataset)
|
57 |
|
58 |
indices = {}
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
for key, readme_flag in {"packages": True, "programs": True}.items():
|
61 |
+
index, data = load_and_index_dataset(f"zigistry/{key}", include_readme=readme_flag)
|
62 |
+
indices[key] = (index, data)
|
|
|
|
|
|
|
63 |
|
64 |
+
def perform_search(query: str, dataset_key: str, k: int):
|
65 |
+
index, dataset = indices[dataset_key]
|
66 |
+
|
67 |
+
query_embedding = model.encode([query])
|
68 |
+
query_embedding = np.array(query_embedding, dtype=np.float32)
|
69 |
+
|
70 |
+
distances, idxs = index.search(query_embedding, k)
|
71 |
+
|
72 |
+
results = []
|
73 |
+
for dist, idx in zip(distances[0], idxs[0]):
|
74 |
+
if idx == -1:
|
75 |
+
continue
|
76 |
+
|
77 |
+
item = dataset[int(idx)].copy()
|
78 |
+
item['relevance_score'] = 1.0 - (dist / 2.0)
|
79 |
+
results.append(item)
|
80 |
+
|
81 |
return results
|
82 |
|
83 |
@app.get("/searchPackages/")
|
84 |
+
def search_packages(q: str, k: int = 10):
|
85 |
+
results = perform_search(query=q, dataset_key="packages", k=k)
|
|
|
|
|
|
|
|
|
86 |
headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"}
|
87 |
return JSONResponse(content=results, headers=headers)
|
88 |
|
89 |
@app.get("/searchPrograms/")
|
90 |
+
def search_programs(q: str, k: int = 10):
|
91 |
+
results = perform_search(query=q, dataset_key="programs", k=k)
|
|
|
|
|
|
|
|
|
92 |
headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"}
|
93 |
+
return JSONResponse(content=results, headers=headers)
|