Update app.py
Browse files
app.py
CHANGED
@@ -8,74 +8,79 @@ from typing import List, Dict
|
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
"
|
16 |
-
"stargazers_count",
|
17 |
-
"
|
18 |
-
"
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
model = SentenceTransformer(EMBEDDING_MODEL_NAME)
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
return raw_dataset, np.array(embeddings)
|
37 |
-
|
38 |
-
def build_faiss_index(embeddings: np.ndarray) -> faiss.IndexFlatL2:
|
39 |
-
index = faiss.IndexFlatL2(embeddings.shape[1])
|
40 |
-
index.add(embeddings)
|
41 |
-
return index
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
47 |
|
48 |
-
def
|
49 |
if len(distances) == 0:
|
50 |
return []
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
# Load datasets and create indices
|
56 |
-
data_configs = {
|
57 |
-
"packages": "zigistry/packages",
|
58 |
-
"programs": "zigistry/programs"
|
59 |
-
}
|
60 |
-
|
61 |
-
data_store = {}
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
"embeddings": embeddings
|
70 |
-
}
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
80 |
headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"}
|
81 |
-
return JSONResponse(content=results, headers=headers)
|
|
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
11 |
+
FIELDS = (
|
12 |
+
"full_name",
|
13 |
+
"description",
|
14 |
+
"default_branch",
|
15 |
+
"open_issues",
|
16 |
+
"stargazers_count",
|
17 |
+
"forks_count",
|
18 |
+
"watchers_count",
|
19 |
+
"license",
|
20 |
+
"size",
|
21 |
+
"fork",
|
22 |
+
"updated_at",
|
23 |
+
"has_build_zig",
|
24 |
+
"has_build_zig_zon",
|
25 |
+
"created_at",
|
26 |
+
)
|
27 |
|
28 |
+
model = SentenceTransformer("all-MiniLM-L6-v2")
|
|
|
29 |
|
30 |
+
def load_dataset_with_fields(name, include_readme=False):
|
31 |
+
dataset = load_dataset(name)["train"]
|
32 |
+
repo_texts = [
|
33 |
+
" ".join(str(x.get(field, "")) for field in FIELDS) +
|
34 |
+
(" " + x.get("readme_content", "") if include_readme else "") +
|
35 |
+
" " + " ".join(x.get("topics", []))
|
36 |
+
for x in dataset
|
37 |
+
]
|
38 |
+
if not include_readme:
|
39 |
+
dataset = [{k: v for k, v in item.items() if k != "readme_content"} for item in dataset]
|
40 |
+
return dataset, repo_texts
|
41 |
|
42 |
+
datasets = {
|
43 |
+
"packages": load_dataset_with_fields("zigistry/packages", include_readme=True),
|
44 |
+
"programs": load_dataset_with_fields("zigistry/programs", include_readme=True),
|
45 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
indices = {}
|
48 |
+
for key, (dataset, repo_texts) in datasets.items():
|
49 |
+
repo_embeddings = model.encode(repo_texts)
|
50 |
+
index = faiss.IndexFlatL2(repo_embeddings.shape[1])
|
51 |
+
index.add(np.array(repo_embeddings))
|
52 |
+
indices[key] = (index, dataset)
|
53 |
|
54 |
+
def filter_results_by_distance(distances, idxs, dataset, threshold_ratio=0.3):
|
55 |
if len(distances) == 0:
|
56 |
return []
|
57 |
+
min_distance = np.min(distances)
|
58 |
+
max_distance = np.max(distances)
|
59 |
+
threshold = min_distance + ((max_distance - min_distance) * threshold_ratio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
results = [
|
62 |
+
dataset[int(i)]
|
63 |
+
for d, i in zip(distances, idxs)
|
64 |
+
if d <= threshold
|
65 |
+
]
|
66 |
+
return results
|
|
|
|
|
67 |
|
68 |
+
@app.get("/searchPackages/")
|
69 |
+
def search_packages(q: str):
|
70 |
+
key = "packages"
|
71 |
+
index, dataset = indices[key]
|
72 |
+
query_embedding = model.encode([q])
|
73 |
+
distances, idxs = index.search(np.array(query_embedding), len(dataset))
|
74 |
+
results = filter_results_by_distance(distances[0], idxs[0], dataset)
|
75 |
+
headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"}
|
76 |
+
return JSONResponse(content=results, headers=headers)
|
77 |
|
78 |
+
@app.get("/searchPrograms/")
|
79 |
+
def search_programs(q: str):
|
80 |
+
key = "programs"
|
81 |
+
index, dataset = indices[key]
|
82 |
+
query_embedding = model.encode([q])
|
83 |
+
distances, idxs = index.search(np.array(query_embedding), len(dataset))
|
84 |
+
results = filter_results_by_distance(distances[0], idxs[0], dataset)
|
85 |
headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"}
|
86 |
+
return JSONResponse(content=results, headers=headers)
|