|
import faiss |
|
import numpy as np |
|
from fastapi import FastAPI, Query |
|
from fastapi.responses import JSONResponse |
|
from datasets import load_dataset |
|
from sentence_transformers import SentenceTransformer |
|
|
|
app = FastAPI() |
|
|
|
FIELDS = ( |
|
"full_name", |
|
"description", |
|
"default_branch", |
|
"open_issues", |
|
"stargazers_count", |
|
"forks_count", |
|
"watchers_count", |
|
"license", |
|
"size", |
|
"fork", |
|
"updated_at", |
|
"has_build_zig", |
|
"has_build_zig_zon", |
|
"created_at", |
|
) |
|
|
|
model = SentenceTransformer("all-MiniLM-L6-v2") |
|
|
|
def load_dataset_with_fields(name, include_readme=False): |
|
dataset = load_dataset(name)["train"] |
|
repo_texts = [ |
|
" ".join(str(x.get(field, "")) for field in FIELDS) + |
|
(" " + x.get("readme_content", "")) * include_readme + |
|
" " + " ".join(x.get("topics", [])) |
|
for x in dataset |
|
] |
|
if not include_readme: |
|
dataset = [{k: v for k, v in item.items() if k != "readme_content"} for item in dataset] |
|
return dataset, repo_texts |
|
|
|
datasets = { |
|
"packages": load_dataset_with_fields("zigistry/packages", include_readme=True), |
|
"programs": load_dataset_with_fields("zigistry/programs", include_readme=True), |
|
} |
|
|
|
indices = {} |
|
for key, (dataset, repo_texts) in datasets.items(): |
|
repo_embeddings = model.encode(repo_texts) |
|
index = faiss.IndexFlatL2(repo_embeddings.shape[1]) |
|
index.add(np.array(repo_embeddings)) |
|
indices[key] = (index, dataset) |
|
|
|
scroll_data = { |
|
"infiniteScrollPackages": load_dataset_with_fields("zigistry/packages", include_readme=False)[0], |
|
"infiniteScrollPrograms": load_dataset_with_fields("zigistry/programs", include_readme=False)[0], |
|
} |
|
|
|
def filter_results_by_distance(distances, idxs, dataset, max_results=50, threshold=0.6): |
|
""" |
|
Only return results that are likely relevant (distance-based filtering). |
|
Lower distance = more similar. |
|
Threshold is a fraction of the *minimum* distance found. |
|
""" |
|
if len(distances) == 0: |
|
return [] |
|
min_dist = np.min(distances) |
|
cutoff = min_dist + ((max(distances) - min_dist) * threshold) |
|
filtered = [ |
|
dataset[int(i)] |
|
for d, i in zip(distances, idxs) |
|
if d <= cutoff |
|
] |
|
return filtered[:max_results] |
|
|
|
@app.get("/infiniteScrollPackages/") |
|
def infinite_scroll_packages(q: int = Query(0, ge=0)): |
|
start = q * 10 |
|
content = scroll_data["infiniteScrollPackages"][start : start + 10] |
|
headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"} |
|
return JSONResponse(content=content, headers=headers) |
|
|
|
@app.get("/infiniteScrollPrograms/") |
|
def infinite_scroll_programs(q: int = Query(0, ge=0)): |
|
start = q * 10 |
|
content = scroll_data["infiniteScrollPrograms"][start : start + 10] |
|
headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"} |
|
return JSONResponse(content=content, headers=headers) |
|
|
|
@app.get("/searchPackages/") |
|
def search_packages(q: str): |
|
key = "packages" |
|
index, dataset = indices[key] |
|
query_embedding = model.encode([q]) |
|
distances, idxs = index.search(np.array(query_embedding), len(dataset)) |
|
|
|
results = filter_results_by_distance(distances[0], idxs[0], dataset) |
|
headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"} |
|
return JSONResponse(content=results, headers=headers) |
|
|
|
@app.get("/searchPrograms/") |
|
def search_programs(q: str): |
|
key = "programs" |
|
index, dataset = indices[key] |
|
query_embedding = model.encode([q]) |
|
distances, idxs = index.search(np.array(query_embedding), len(dataset)) |
|
results = filter_results_by_distance(distances[0], idxs[0], dataset) |
|
headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"} |
|
return JSONResponse(content=results, headers=headers) |