File size: 3,842 Bytes
0861ec7
 
 
fad1ac4
0861ec7
 
 
 
 
 
2f9d235
 
 
 
 
 
 
 
 
 
 
 
 
 
0861ec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f9d235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04adf6e
 
 
fad1ac4
 
 
04adf6e
 
 
 
fad1ac4
 
 
0861ec7
4121aea
 
 
 
 
2f9d235
 
 
fad1ac4
2f9d235
4121aea
 
 
 
0861ec7
04adf6e
2f9d235
 
fad1ac4
2f9d235
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import faiss
import numpy as np
from fastapi import FastAPI, Query
from fastapi.responses import JSONResponse
from datasets import load_dataset
from sentence_transformers import SentenceTransformer

app = FastAPI()

FIELDS = (
    "full_name",
    "description",
    "default_branch",
    "open_issues",
    "stargazers_count",
    "forks_count",
    "watchers_count",
    "license",
    "size",
    "fork",
    "updated_at",
    "has_build_zig",
    "has_build_zig_zon",
    "created_at",
)

model = SentenceTransformer("all-MiniLM-L6-v2")

def load_dataset_with_fields(name, include_readme=False):
    dataset = load_dataset(name)["train"]
    repo_texts = [
        " ".join(str(x.get(field, "")) for field in FIELDS) + 
        (" " + x.get("readme_content", "")) * include_readme + 
        " " + " ".join(x.get("topics", []))
        for x in dataset
    ]
    if not include_readme:
        dataset = [{k: v for k, v in item.items() if k != "readme_content"} for item in dataset]
    return dataset, repo_texts

datasets = {
    "packages": load_dataset_with_fields("zigistry/packages", include_readme=True),
    "programs": load_dataset_with_fields("zigistry/programs", include_readme=True),
}

indices = {}
for key, (dataset, repo_texts) in datasets.items():
    repo_embeddings = model.encode(repo_texts)
    index = faiss.IndexFlatL2(repo_embeddings.shape[1])
    index.add(np.array(repo_embeddings))
    indices[key] = (index, dataset)

scroll_data = {
    "infiniteScrollPackages": load_dataset_with_fields("zigistry/packages", include_readme=False)[0],
    "infiniteScrollPrograms": load_dataset_with_fields("zigistry/programs", include_readme=False)[0],
}

def filter_results_by_distance(distances, idxs, dataset, max_results=50, threshold=0.6):
    """
    Only return results that are likely relevant (distance-based filtering).
    Lower distance = more similar.
    Threshold is a fraction of the *minimum* distance found.
    """
    if len(distances) == 0:
        return []
    min_dist = np.min(distances)
    cutoff = min_dist + ((max(distances) - min_dist) * threshold)
    filtered = [
        dataset[int(i)]
        for d, i in zip(distances, idxs)
        if d <= cutoff
    ]
    return filtered[:max_results]

@app.get("/infiniteScrollPackages/")
def infinite_scroll_packages(q: int = Query(0, ge=0)):
    start = q * 10
    content = scroll_data["infiniteScrollPackages"][start : start + 10]
    headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"}
    return JSONResponse(content=content, headers=headers)

@app.get("/infiniteScrollPrograms/")
def infinite_scroll_programs(q: int = Query(0, ge=0)):
    start = q * 10
    content = scroll_data["infiniteScrollPrograms"][start : start + 10]
    headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"}
    return JSONResponse(content=content, headers=headers)

@app.get("/searchPackages/")
def search_packages(q: str):
    key = "packages"
    index, dataset = indices[key]
    query_embedding = model.encode([q])
    distances, idxs = index.search(np.array(query_embedding), len(dataset))
    # Only keep results that are likely relevant
    results = filter_results_by_distance(distances[0], idxs[0], dataset)
    headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"}
    return JSONResponse(content=results, headers=headers)

@app.get("/searchPrograms/")
def search_programs(q: str):
    key = "programs"
    index, dataset = indices[key]
    query_embedding = model.encode([q])
    distances, idxs = index.search(np.array(query_embedding), len(dataset))
    results = filter_results_by_distance(distances[0], idxs[0], dataset)
    headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"}
    return JSONResponse(content=results, headers=headers)