Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import faiss
|
2 |
+
import numpy as np
|
3 |
+
from fastapi import FastAPI, Query
|
4 |
+
from datasets import load_dataset
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
|
7 |
+
app = FastAPI()
|
8 |
+
|
9 |
+
FIELDS = (
|
10 |
+
"full_name", "description", "watchers_count", "forks_count", "license",
|
11 |
+
"default_branch", "has_build_zig", "has_build_zig_zon", "fork",
|
12 |
+
"open_issues", "stargazers_count", "updated_at", "created_at",
|
13 |
+
"size"
|
14 |
+
)
|
15 |
+
|
16 |
+
model = SentenceTransformer("all-MiniLM-L6-v2")
|
17 |
+
|
18 |
+
def load_dataset_with_fields(name, include_readme=False):
|
19 |
+
dataset = load_dataset(name)["train"]
|
20 |
+
repo_texts = [
|
21 |
+
" ".join(str(x.get(field, "")) for field in FIELDS) +
|
22 |
+
(" " + x.get("readme_content", "")) * include_readme +
|
23 |
+
" " + " ".join(x.get("topics", []))
|
24 |
+
for x in dataset
|
25 |
+
]
|
26 |
+
if not include_readme:
|
27 |
+
dataset = [{k: v for k, v in item.items() if k != "readme_content"} for item in dataset]
|
28 |
+
return dataset, repo_texts
|
29 |
+
|
30 |
+
datasets = {
|
31 |
+
"packages": load_dataset_with_fields("zigistry/packages", include_readme=True),
|
32 |
+
"programs": load_dataset_with_fields("zigistry/programs", include_readme=True),
|
33 |
+
}
|
34 |
+
|
35 |
+
indices = {}
|
36 |
+
for key, (dataset, repo_texts) in datasets.items():
|
37 |
+
repo_embeddings = model.encode(repo_texts)
|
38 |
+
index = faiss.IndexFlatL2(repo_embeddings.shape[1])
|
39 |
+
index.add(np.array(repo_embeddings))
|
40 |
+
indices[key] = (index, dataset)
|
41 |
+
|
42 |
+
scroll_data = {
|
43 |
+
"infiniteScrollPackages": load_dataset_with_fields("zigistry/packages", include_readme=False)[0],
|
44 |
+
"infiniteScrollPrograms": load_dataset_with_fields("zigistry/programs", include_readme=False)[0],
|
45 |
+
}
|
46 |
+
|
47 |
+
@app.get("/fetch_data/")
|
48 |
+
def fetch_data(category: str, page_number: int = Query(0, ge=0)):
|
49 |
+
if category not in scroll_data:
|
50 |
+
return {"error": "Invalid category"}
|
51 |
+
start = page_number * 10
|
52 |
+
return scroll_data[category][start : start + 10]
|
53 |
+
|
54 |
+
@app.get("/search_repositories/")
|
55 |
+
def search_repositories(category: str, query: str):
|
56 |
+
key = "packages" if category == "SearchPackages" else "programs"
|
57 |
+
if key not in indices:
|
58 |
+
return {"error": "Invalid category"}
|
59 |
+
index, dataset = indices[key]
|
60 |
+
query_embedding = model.encode([query])
|
61 |
+
distances, indices_ = index.search(np.array(query_embedding), len(dataset))
|
62 |
+
min_distance = distances[0][0]
|
63 |
+
threshold = min_distance * 1.5
|
64 |
+
results = [dataset[int(i)] for d, i in zip(distances[0], indices_[0]) if d <= threshold]
|
65 |
+
return results[:280] if len(results) > 280 else results
|