api-ai / app.py
RohanVashisht's picture
Update app.py
0eeaf9e verified
raw
history blame
2.97 kB
import faiss
import numpy as np
from fastapi import FastAPI
from fastapi.responses import JSONResponse
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
from typing import List
app = FastAPI()
FIELDS = (
"full_name",
"description",
"default_branch",
"open_issues",
"stargazers_count",
"forks_count",
"watchers_count",
"license",
"size",
"fork",
"updated_at",
"has_build_zig",
"has_build_zig_zon",
"created_at",
)
print("Loading sentence transformer model (all-MiniLM-L6-v2)...")
model = SentenceTransformer("all-MiniLM-L6-v2")
print("Model loaded successfully.")
def load_and_index_dataset(name: str, include_readme: bool = False):
print(f"Loading dataset '{name}'...")
dataset = load_dataset(name)["train"]
repo_texts = [
" ".join(str(x.get(field, "")) for field in FIELDS) +
(" " + x.get("readme_content", "") if include_readme else "") +
" " + " ".join(x.get("topics", []))
for x in dataset
]
if not include_readme:
dataset = [{k: v for k, v in item.items() if k != "readme_content"} for item in dataset]
print(f"Creating embeddings for {len(repo_texts)} documents in '{name}'...")
repo_embeddings = model.encode(repo_texts, show_progress_bar=True)
print(f"Building FAISS index for '{name}'...")
embedding_dim = repo_embeddings.shape[1]
index = faiss.IndexFlatL2(embedding_dim)
index.add(np.array(repo_embeddings, dtype=np.float32))
print(f"'{name}' dataset indexed with {index.ntotal} vectors.")
return index, list(dataset)
indices = {}
for key, readme_flag in {"packages": True, "programs": True}.items():
index, data = load_and_index_dataset(f"zigistry/{key}", include_readme=readme_flag)
indices[key] = (index, data)
def perform_search(query: str, dataset_key: str, k: int):
index, dataset = indices[dataset_key]
query_embedding = model.encode([query])
query_embedding = np.array(query_embedding, dtype=np.float32)
distances, idxs = index.search(query_embedding, k)
results = []
for dist, idx in zip(distances[0], idxs[0]):
if idx == -1:
continue
item = dataset[int(idx)].copy()
item['relevance_score'] = 1.0 - (dist / 2.0)
results.append(item)
return results
@app.get("/searchPackages/")
def search_packages(q: str, k: int = 10):
results = perform_search(query=q, dataset_key="packages", k=k)
headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"}
return JSONResponse(content=results, headers=headers)
@app.get("/searchPrograms/")
def search_programs(q: str, k: int = 10):
results = perform_search(query=q, dataset_key="programs", k=k)
headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"}
return JSONResponse(content=results, headers=headers)